cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238133 Difference between A238131(n) and A238132(n).

Original entry on oeis.org

0, 1, 1, -1, -1, -3, 0, -2, 1, 2, 1, 2, 4, 1, -1, 4, -2, -1, -3, -1, -2, -2, -6, 0, -1, 1, -4, 0, 3, 2, 2, 2, 3, 0, 4, 7, 0, 0, 2, -3, 7, -2, -1, -3, -2, -4, 0, -3, -3, -2, -1, -10, -1, 0, 1, -1, 0, -6, 2, 2, 0, 4, 3, 4, 0, 2, 4, 3, 0, 5, 8, 2, 0, 1, -1, 1, -3
Offset: 0

Views

Author

Mircea Merca, Feb 18 2014

Keywords

Comments

Difference between the number of parts in all partitions of n into odd number of distinct parts and the number of parts in all partitions of n into even number of distinct parts.
The convolution of A000005 and A010815.

Crossrefs

Programs

  • Maple
    A238133 := proc(n)
        add( numtheory[tau](k)*A010815(n-k),k=0..n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, (p->
          [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
        end:
    a:= n-> (p-> p[4]-p[3])(b(n$2)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 18 2016
  • Mathematica
    Table[SeriesCoefficient[QPochhammer[x] (Log[1 - x] + QPolyGamma[1, x])/Log[x], {x, 0, n}], {n, 0, 80}] (* Vladimir Reshetnikov, Nov 20 2016 *)

Formula

a(n) = Sum_{k=0..A235963(n)-1} (-1)^A110654(k) * A000005(n-A001318(k)).
G.f.: Product_{k>=1} (1-x^k) * Sum_{k>=1} x^k/(1-x^k).
G.f.: (x)_inf * (log(1-x) + psi_x(1))/log(x), where psi_q(z) is the q-digamma function, (q)_inf is the q-Pochhammer symbol (the Euler function).

A015723 Number of parts in all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1

Views

Author

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]]  (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
    q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
    Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
       Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf) /* Joerg Arndt, Oct 20 2012 */

Formula

G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - Vladeta Jovovic, Nov 26 2002
G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Sep 21 2005
a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - Mircea Merca, Feb 26 2014
a(n) = Sum_{k>=1} k*A008289(n,k). - Vaclav Kotesovec, Apr 16 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, May 19 2018
For n > 0, a(n) = A116676(n) + A116680(n). - Vaclav Kotesovec, May 26 2018

Extensions

Extended and corrected by Naohiro Nomoto, Feb 24 2002

A238450 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an odd number of distinct parts.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 3, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0, 0, 1, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Mircea Merca, Feb 26 2014

Keywords

Examples

			n\k | 1 2 3 4 5 6 7 8 9 10
   1: 1
   2: 0 1
   3: 0 0 1
   4: 0 0 0 1
   5: 0 0 0 0 1
   6: 1 1 1 0 0 1
   7: 1 1 0 1 0 0 1
   8: 2 1 1 1 1 0 0 1
   9: 2 2 2 1 1 1 0 0 1
  10: 3 2 2 1 2 1 1 0 0 1
		

Crossrefs

Columns k=1..6 are A238208, A238209, A238210, A238211, A238212, A238213.
Row sums are A238131.

Programs

  • PARI
    T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) + prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, m==0)} \\ Andrew Howroyd, Apr 29 2020

Formula

T(n,k) = Sum_{j=1..round(n/(2*k))} A067661(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067659(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} + (1/2)*(q^k/(1-q^k))*(q;q){inf}.
T(n,k) = A015716(n,k) - A238451(n,k). - Andrew Howroyd, Apr 29 2020

Extensions

Terms a(79) and beyond from Andrew Howroyd, Apr 29 2020

A238132 Number of parts in all partitions of n into even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 134, 162, 190, 228, 270, 322, 380, 446, 524, 616, 720, 838, 980, 1134, 1314, 1526, 1760, 2026, 2336, 2676, 3072, 3518, 4020, 4586, 5232, 5948, 6760, 7676, 8698, 9846, 11142, 12578
Offset: 0

Views

Author

Mircea Merca, Feb 18 2014

Keywords

Examples

			a(8)=6 because the partitions of 8 into even number of distinct parts are: 7+1, 6+2 and 5+3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, (p->
          [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[3]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 27 2015
  • Mathematica
    max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] - (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)

Formula

a(n)=(1/2)*A015723(n)-(1/2)*sum{k=0..A235963(n)-1, (-1)^A110654(k)*A000005(n-A001318(k))}=A015723(n)-A238131(n).
G.f.: (1/2)*prod(k>=1, 1+x^k ) * sum(k>=1, x^k/(1+x^k) ) - (1/2)*prod(k>=1, 1-x^k) * sum(k>=1, x^k/(1-x^k) ).
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 27 2018
Showing 1-4 of 4 results.