A277973 Sum of horizontal positions of the first peak in all bargraphs of semiperimeter n.
0, 0, 0, 1, 6, 25, 91, 311, 1029, 3346, 10778, 34544, 110444, 352785, 1126885, 3601617, 11521648, 36899528, 118322448, 379908707, 1221423149, 3932113059, 12675055399, 40909511880, 132200481507, 427718677728, 1385419058692, 4492446685542, 14582927712740, 47385785436719
Offset: 1
Keywords
Examples
For n = 4, a(4) = 1, as only the bargraph with first column of height one and second column of height two has horizontal position 1, all other cases are zero.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
Programs
-
PARI
seq(n) = my(r=sqrt((1 - x)*(1 - 3*x - x^2 - x^3) + O(x^(n-2)))); Vec(2*x^3*(1 + x^2 - r) / ((1 - x)*(1 - 2*x - x^2 + r)^2), -n) \\ Andrew Howroyd, Jan 12 2024
Formula
G.f.: (2*x^3*(x^2-sqrt(x^4+2*x^2-4*x+1)+1)) / ((1-x)*(-x^2+sqrt(x^4+2*x^2-4*x+1)-2*x+1)^2).
Comments