A168659
Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1
a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
1 11 21 22 311 321 322 332 333 4222
111 1111 2111 2211 331 2222 4221 4321
11111 111111 2221 4211 4311 4411
4111 221111 51111 52111
211111 311111 222111 222211
1111111 11111111 321111 322111
21111111 331111
111111111 22111111
1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
1 2 3 4 5 6 7 8 9 A B
21 22 41 42 43 44 63 64 65
311 321 61 62 81 82 83
322 332 333 622 A1
331 611 621 631 632
4111 4211 4221 4222 641
4311 4321 911
51111 4411 4322
52111 4331
4421
8111
52211
53111
611111
(End)
- Vaclav Kotesovec, Table of n, a(n) for n = 1..5000 (terms 1..301 from Vladeta Jovovic corrected by N. J. A. Sloane, Oct 05 2010, terms 302..1000 from Seiichi Manyama)
Note: A-numbers of Heinz-number sequences are in parentheses below.
If all parts (not just the greatest) are divisors we get
A340693 (
A340606).
-
a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
-
Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)
A105039
Number of compositions of n with unique smallest part.
Original entry on oeis.org
1, 1, 3, 3, 8, 11, 20, 34, 59, 96, 167, 282, 475, 800, 1352, 2275, 3828, 6426, 10785, 18085, 30297, 50698, 84770, 141623, 236425, 394381, 657380, 1094975, 1822628, 3031843, 5040129, 8373594, 13903588, 23072567, 38267330, 63435438, 105103059, 174054820, 288105394
Offset: 1
a(5) = 8 because we have 5, 14, 41, 23, 32, 122, 212 and 221.
-
G:= sum(k*x^(2*k-1)/((1-x^k)*(1-x)^(k-1)), k=1..70): Gser:=series(G,x=0,44): seq(coeff(Gser,x^n),n=1..41); # Emeric Deutsch, Apr 13 2005
-
nn=37;Drop[CoefficientList[Series[Sum[x^j/(1-x^(j+1)/(1-x))^2,{j,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Mar 31 2014 *)
-
a(n)=1+sum(k=2,(n+3)\2,k*sum(s=1,(n-1)\k,binomial(n-k*s-1,k-2))) (Alekseyev)
A168656
Number of partitions of n such that the smallest part is divisible by the number of parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 10, 11, 13, 15, 18, 20, 23, 25, 29, 33, 36, 41, 47, 53, 58, 66, 74, 83, 92, 103, 116, 130, 144, 160, 179, 199, 219, 243, 269, 298, 328, 362, 399, 441, 484, 533, 586, 645, 708, 778, 854, 937, 1026, 1124, 1230, 1347, 1470, 1607, 1756, 1917, 2089
Offset: 1
-
nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 16 2024 *)
Table[Count[IntegerPartitions[n],?(Mod[#[[-1]],Length[#]]==0&)],{n,70}] (* _Harvey P. Dale, Dec 22 2024 *)
-
N=100; x='x+O('x^N);
Vec( sum(k=1,sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1,k-1, 1-x^i) ) )
A168657
Number of partitions of n such that the number of parts is divisible by the smallest part.
Original entry on oeis.org
1, 1, 2, 4, 6, 8, 12, 17, 25, 34, 48, 64, 87, 114, 151, 198, 258, 332, 428, 546, 695, 879, 1108, 1388, 1737, 2159, 2680, 3312, 4082, 5009, 6138, 7492, 9126, 11081, 13429, 16228, 19575, 23547, 28277, 33879, 40520, 48354, 57615, 68509, 81337, 96388, 114055
Offset: 1
-
b:= proc(n, i, t) option remember;
`if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0,
`if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+
add(b(n-i*j, i-1, t+j), j=0..n/i))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=1..60); # Alois P. Heinz, May 24 2012
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n],?(Mod[Length[#],#[[-1]]]==0&)],{n,50}] (* _Harvey P. Dale, Jul 16 2025 *)
-
my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
A168655
Number of compositions such that the number of parts is divisible by the first part.
Original entry on oeis.org
1, 1, 3, 5, 11, 22, 44, 88, 177, 355, 710, 1419, 2838, 5679, 11363, 22727, 45443, 90862, 181703, 363419, 726903, 1453875, 2907667, 5814880, 11628864, 23256828, 46513965, 93031069, 186068503, 372142797, 744280096, 1488527555, 2976987042, 5953897971, 11907811651
Offset: 1
-
b:= proc(n,t,g) option remember; `if`(n=0,
`if`(irem(t, g)=0, 1, 0), add(b(n-i, t+1,
`if`(g=0,i,g)), i=1..n))
end:
a:= n-> b(n,0,0):
seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
-
A101510[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; A168655 = Join[{1}, Table[A101510[n], {n, 0, 32}] // Differences] (* Jean-François Alcover, Jan 24 2014 *)
A224960
Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) >= p(1) - 1.
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 26, 52, 101, 200, 396, 787, 1564, 3117, 6214, 12398, 24749, 49427, 98740, 197303, 394323, 788201, 1575695, 3150265, 6298732, 12594595, 25184598, 50361842, 100711888, 201404839, 402779246, 805509560, 1610940381, 3221753990
Offset: 0
The a(5) = 14 such compositions of 5 are
01: [ 1 1 1 1 1 ]
02: [ 1 1 1 2 ]
03: [ 1 1 2 1 ]
04: [ 1 1 3 ]
05: [ 1 2 1 1 ]
06: [ 1 2 2 ]
07: [ 1 3 1 ]
08: [ 1 4 ]
09: [ 2 1 1 1 ]
10: [ 2 1 2 ]
11: [ 2 2 1 ]
12: [ 2 3 ]
13: [ 3 2 ]
14: [ 5 ]
(the two forbidden compositions are [ 3 1 1 ] and [ 4 1 ]).
Cf.
A171682 (compositions such that p(j) >= p(1)).
Cf.
A079501 (compositions such that p(j) > p(1)).
Cf.
A048888 (compositions such that p(j) <= p(1) + 1).
Cf.
A007059 (compositions such that p(j) < p(1)).
Cf.
A079500 (compositions such that p(j) <= p(1)).
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j,
`if`(i=0, max(1, j-1), i)), j=`if`(i=0, 1, i)..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2013
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, If[i == 0, Max[1, j - 1], i]], {j, If[i == 0, 1, i], n}]];
a[n_] := b[n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
A238348
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the last occurrence of a smallest part, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 4, 4, 4, 3, 1, 5, 7, 8, 7, 4, 1, 8, 11, 14, 14, 11, 5, 1, 12, 18, 23, 27, 25, 16, 6, 1, 19, 27, 39, 49, 51, 41, 22, 7, 1, 28, 44, 64, 85, 98, 92, 63, 29, 8, 1, 45, 69, 103, 144, 180, 189, 155, 92, 37, 9, 1, 70, 109, 166, 241, 319, 366, 344, 247, 129, 46, 10, 1
Offset: 1
Triangle starts:
01: 1,
02: 1, 1,
03: 2, 1, 1,
04: 2, 3, 2, 1,
05: 4, 4, 4, 3, 1,
06: 5, 7, 8, 7, 4, 1,
07: 8, 11, 14, 14, 11, 5, 1,
08: 12, 18, 23, 27, 25, 16, 6, 1,
09: 19, 27, 39, 49, 51, 41, 22, 7, 1,
10: 28, 44, 64, 85, 98, 92, 63, 29, 8, 1,
11: 45, 69, 103, 144, 180, 189, 155, 92, 37, 9, 1,
12: 70, 109, 166, 241, 319, 366, 344, 247, 129, 46, 10, 1,
13: 110, 172, 267, 398, 551, 679, 709, 591, 376, 175, 56, 11, 1,
...
Showing 1-7 of 7 results.
Comments