A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices.
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 4, 1; 1, 7, 7, 1; 1, 10, 16, 10, 1; 1, 13, 28, 28, 13, 1; 1, 16, 43, 58, 43, 16, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
Maple
A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
-
Mathematica
T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
-
Sage
[[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
Formula
T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008
Extensions
More terms from Roger L. Bagula, Aug 20 2008
Comments