cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 2634 results. Next

A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  4,  1;
  1,  7,  7,  1;
  1, 10, 16, 10,  1;
  1, 13, 28, 28, 13,  1;
  1, 16, 43, 58, 43, 16,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
  • Sage
    [[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008

Extensions

More terms from Roger L. Bagula, Aug 20 2008

A131818 A130296 + A002260 - A000012. Triangle read by rows: row n consists of n, 2, 3, 4, ..., n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2007

Keywords

Comments

Row sums = A034856; (1, 4, 8, 13, 19, 26, 34, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  3, 2, 3;
  4, 2, 3, 4;
  5, 2, 3, 4, 5;
  6, 2, 3, 4, 5, 6;
  7, 2, 3, 4, 5, 6, 7;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Join[{n},Range[2,n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 24 2021 *)
  • PARI
    t(n, k) = if (k==1, n, k); \\ Michel Marcus, Feb 12 2014
    
  • Python
    from math import isqrt, comb
    def A131818(n):
        y = (m:=isqrt(k:=n-1<<1))+(k>m*(m+1))
        return n-comb(y,2) # Chai Wah Wu, Jul 07 2025

Formula

A130296 + A002260 - A000012 as infinite lower triangular matrices.
T(n, 1) = n, T(n, k) = k for k > 1. - Michel Marcus, Feb 12 2014

Extensions

More terms from Michel Marcus, Feb 12 2014

A131110 A000012 * A133084.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 10, 6, 5, 1, 15, 10, 15, 5, 1, 21, 15, 35, 15, 7, 1, 28, 21, 70, 35, 28, 7, 1, 36, 28, 126, 70, 84, 28, 9, 1, 45, 36, 210, 126, 210, 84, 45, 9, 1, 55, 45, 330, 210, 462, 210, 165, 45, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums give A033484.
Duplicate of A133093. - Georg Fischer, Oct 10 2021

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 3, 1;
10, 6, 5, 1;
15, 10, 15, 5, 1;
21, 15, 35, 15, 7, 1;
28, 21, 70, 35, 28, 7, 1;
...
		

Crossrefs

Programs

  • PARI
    T4(n, k) = if(k == n, 1, (1  - (1 + (-1)^k)/2 )*binomial(n, k) + ((1 + (-1)^k)/2)*binomial(n - 1, k - 1)); \\ A133084
    N=10; matrix(N, N, n, k, if(n>=k, 1))*matrix(N, N, n, k, T4(n,k)) \\ Michel Marcus, Oct 11 2021

Formula

A000012 * A133084 as infinite lower triangular matrices.

Extensions

a(46) corrected by Georg Fischer, Oct 10 2021

A137650 Triangle read by rows, A008277 * A000012.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 14, 7, 1, 52, 51, 36, 11, 1, 203, 202, 171, 81, 16, 1, 877, 876, 813, 512, 162, 22, 1, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115974, 115463
Offset: 1

Views

Author

Gary W. Adamson, Feb 01 2008

Keywords

Comments

Left column = Bell numbers (A000110) starting (1, 2, 5, 15, 52, 203, ...). Row sums = A005493(n+1): (1, 3, 10, 37, 151, 674, ...).
Corresponding to the generalized Stirling number triangle of first kind A049444. - Peter Luschny, Sep 18 2011

Examples

			First few rows of the triangle are
    1;
    2,   1;
    5,   4,   1;
   15,  14,   7,   1;
   52,  51,  36,  11,   1;
  203, 202, 171,  81,  16,   1;
  877, 876, 813, 512, 162,  22,   1;
  ...
		

Crossrefs

A similar triangle is A133611.

Programs

  • Maple
    A137650_row := proc(n) local k,i;
    add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1),k=0..n-1);
    seq(coeff(%,x,k),k=0..n-1) end:
    seq(print(A137650_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
  • Mathematica
    row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest;
    Array[row, 10] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

A008277 * A000012 as infinite lower triangular matrices. Partial sums of A008277 rows starting from the right.

A128379 A000012^23 * A000594.

Original entry on oeis.org

1, -1, -24, 0, 276, 300, -1748, -4300, 4278, 29026, 22724, -94668, -242398, -18722, 856980, 1472252, -384491, -5299269, -7824968, 2088032, 25655442, 38814478, -69160, -99735912, -175711283, -68736397, 294769680, 686373176, 562588924, -513324396, -2155273788, -2808874356
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: given A000012^k * A000594, k=23 and 24 are the only k's generating sequences with zeros. k = 24 in A128378: (1, 0, -24, -24, 252, 552, -1196, -5496, ...).

Crossrefs

Programs

  • Mathematica
    Nest[Accumulate, RamanujanTau[Range[32]], 23] (* Amiram Eldar, Jan 08 2025 *)

Formula

A000012 (partial sum operator) performed 23 times on A000594.

A131816 Triangle read by rows: A130321 + A059268 - A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...), A059268 = (1; 1,2; 1,2,4; ...) and A000012 = (1; 1,1; 1,1,1; ...).

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 8, 5, 5, 8, 16, 9, 7, 9, 16, 32, 17, 11, 11, 17, 32, 64, 33, 19, 15, 19, 33, 64, 128, 65, 35, 23, 23, 35, 65, 128, 256, 129, 67, 39, 31, 39, 67, 129, 256, 512, 257, 131, 71, 47, 47, 71, 131, 257, 512, 1024, 513, 259, 135, 79, 63, 79, 135, 259, 513, 1024
Offset: 0

Views

Author

Gary W. Adamson, Jul 18 2007

Keywords

Comments

Row sums = A000295: (1, 4, 11, 26, 57, 120, ...).
If we regard the sequence as an infinite square array read by diagonals then it has the formula U(n,k) = (2^n + 2^k)/2 - 1. This appears to coincide with the number of n X k 0..1 arrays colored with only straight tiles, and new values 0..1 introduced in row major order, i.e., no equal adjacent values form a corner. (Fill the array with 0's and 1's. There must never be 3 adjacent identical values making a corner, only same values in a straight line.) Some solutions with n = k = 4 are:
0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1
1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1
(Observation from R. H. Hardin, cf. link.) - M. F. Hasler and N. J. A. Sloane, Feb 26 2013

Examples

			First few rows of the triangle:
    1;
    2,  2;
    4,  3,  4;
    8,  5,  5,  8;
   16,  9,  7,  9, 16;
   32, 17, 11, 11, 17, 32;
   64, 33, 19, 15, 19, 33, 64;
  128, 65, 35, 23, 23, 35, 65, 128;
  ...
		

Crossrefs

Row sums give A000295(n+2).

Programs

  • Haskell
    a131816 n k = a131816_tabl !! n !! k
    a131816_row n = a131816_tabl !! n
    a131816_tabl = map (map (subtract 1)) $
       zipWith (zipWith (+)) a130321_tabl a059268_tabl
    -- Reinhard Zumkeller, Feb 27 2013
  • Mathematica
    Table[Table[((2^(m + 1) - 1) + (2^(n - m + 1) - 1))/2, {m, 0, n}], {n, 0, 10}]; Flatten[%] (* Roger L. Bagula, Oct 16 2008 *)

Formula

T(n,m) = ((2^(m + 1) - 1) + (2^(n - m + 1) - 1))/2. - Roger L. Bagula, Oct 16 2008

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

A134541 Triangle read by rows: A000012 * A054525 regarded as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, -1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, -2, -1, 0, 1, 1, 1, 1, -2, -1, 0, 0, 1, 1, 1, 1, -2, -1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -1, 0, 0, 1, 1, 1, 1, 1, -2, -2, -1, 0, 0, 1, 1, 1, 1, 1, 1, -2, -1, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

Row sums = 1.
Left border = A002321, the Mertens function.
A134541 * [1,2,3,...] = A002088: (1, 2, 4, 6, 10, 12, 18, 22, ...).

Examples

			First few rows of the triangle:
   1;
   0,  1;
  -1,  1,  1;
  -1,  0,  1, 1;
  -2,  0,  1, 1, 1;
  -1, -1,  0, 1, 1, 1;
  -2, -1,  0, 1, 1, 1, 1;
  -2, -1,  0, 0, 1, 1, 1, 1;
  -2, -1, -1, 0, 1, 1, 1, 1, 1;
  -1, -2, -1, 0, 0, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Matrix inverse of A176702. - Mats Granvik, Apr 24 2010

Programs

  • Mathematica
    Clear[t, s, n, k, z, x]; z = 1; nn = 10; t[n_, k_] := t[n, k] = If[n >= k, If[k == 1, 1 - Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], t[Floor[n/k], 1]], 0]; Flatten[Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jul 22 2012 *) (* updated Mats Granvik, Apr 10 2016 *)

Formula

Recurrence: T(n, k) = If n >= k then If k = 1 then 1 - Sum_{i=1..n-1} T(n, k + i)/(i + 1)^(s - 1) else T(floor(n/k) else 1)) else 0). - Mats Granvik, Apr 17 2016

Extensions

More terms from Amiram Eldar, Jun 09 2024

A137948 Triangle read by rows, A000012 * A136579.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 3, 4, 6, 5, 4, 6, 12, 24, 6, 5, 8, 18, 48, 120, 7, 6, 10, 24, 72, 240, 720, 8, 7, 12, 30, 96, 360, 1440, 5040, 9, 8, 14, 36, 120, 480, 2160, 10080, 40320, 10, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880
Offset: 0

Views

Author

Gary W. Adamson, Feb 28 2008

Keywords

Comments

Row sums = A014144 starting (1, 3, 7, 17, 51, 205, ...).
T(n,k) = A245334(n,k) / A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Aug 31 2014

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 2,  2;
  4, 3,  4,  6;
  5, 4,  6, 12, 24;
  6, 5,  8, 18, 48, 120;
  7, 6, 10, 24, 72, 240, 720;
  ...
		

Crossrefs

Programs

  • Haskell
    a137948 n k = a137948_tabl !! n !! k
    a137948_row n = a137948_tabl !! n
    a137948_tabl = zipWith (zipWith div) a245334_tabl a007318_tabl
    -- Reinhard Zumkeller, Aug 31 2014

Formula

As infinite lower triangular matrices, A000012 * A136579, where A000012 = (1; 1,1; 1,1,1; ...) and A136579 = (1; 1,1; 1,1,2; 1,1,2,6; 1,1,2,6,24; ...).
T(n,k) = (n+1-k) * k! for 0 <= k <= n. - Werner Schulte, Oct 06 2020

Extensions

Offset changed by Reinhard Zumkeller, Aug 31 2014

A127096 Triangle T(n,m) = A000012*A127094 read by rows.

Original entry on oeis.org

1, 3, 1, 6, 1, 1, 10, 1, 3, 1, 15, 1, 3, 1, 1, 21, 1, 3, 4, 3, 1, 28, 1, 3, 4, 3, 1, 1, 36, 1, 3, 4, 7, 1, 3, 1, 45, 1, 3, 4, 7, 1, 6, 1, 1, 55, 1, 3, 4, 7, 6, 6, 1, 3, 1, 66, 1, 3, 4, 7, 6, 6, 1, 3, 1, 1, 78, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 91, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 1, 105, 1, 3, 4, 7, 6, 12, 8, 7, 4, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007

Keywords

Comments

Consider A000012 as a lower-left all-1's triangle, and build the matrix product by multiplication with A127094 from the right.

Examples

			First few rows of the triangle are:
   1;
   3, 1,
   6, 1, 1;
  10, 1, 3, 1;
  15, 1, 3, 1, 1;
  21, 1, 3, 4, 3, 1;
  28, 1, 3, 4, 3, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
    A127094 := proc(n,m) A127093(n, n-m+1) ; end:
    A127096 := proc(n,m) add( A127094(j,m),j=m..n) ; end:
    for n from 1 to 15 do for m from 1 to n do printf("%d,",A127096(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009
  • Mathematica
    T[n_, m_] := Sum[1 + Mod[j, m - j - 1] - Mod[1 + j, m - j - 1], {j, m, n}];
    Table[T[n, m], {n, 1, 14}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2023 *)

Formula

T(n,m) = Sum_{j=m..n} A000012(n,j)*A127094(j,m) = Sum_{j=m..n} A127094(j,m).

Extensions

Edited and extended by R. J. Mathar, Aug 18 2009

A130330 Triangle read by rows, the matrix product A130321 * A000012, both taken as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 7, 3, 1, 15, 7, 3, 1, 31, 15, 7, 3, 1, 63, 31, 15, 7, 3, 1, 127, 63, 31, 15, 7, 3, 1, 255, 127, 63, 31, 15, 7, 3, 1, 511, 255, 127, 63, 31, 15, 7, 3, 1, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, May 24 2007

Keywords

Comments

Row sums are A000295: (1, 4, 11, 26, 57, 120, 247, ...), the Eulerian numbers.
T(n,k) is the number of length n+1 binary words containing at least two 1's such that the first 1 is preceded by exactly (k-1) 0's. T(3,2) = 3 because we have: 0101, 0110, 0111. - Geoffrey Critzer, Dec 31 2013
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A110441. - Peter Bala, Jul 22 2014
From Wolfdieter Lang, Oct 28 2019:(Start)
This triangle gives the solution of the following problem. Iterate the function f(x) = (x - 1)/2 to obtain f^{[k]}(x) = (x - (2^(k+1) - 1))/2^(k+1), for k >= 0. Find the positive integer x values for which the iterations stay integer and reach 1. Only odd integers x qualify, and the answer is x = x(n) = 2*T(n, 0) = 2*(2^(n+1) - 1), with the iterations T(n,0), ..., T(n,n) = 1.
This iteration is motivated by a problem posed by Johann Peter Hebel (1760 - 1826) in "Zweites Rechnungsexempel" from 1804, with the solution x = 31 corresponding to row n = 3 [15 7 3 1]. The egg selling woman started with 31 = T(4, 0) eggs and after four customers obtained, one after the other, always a number of eggs which was one half of the woman's remaining number of eggs plus 1/2 (selling only whole eggs, of course) she had one egg left. See the link and reference. [For Hebel's first problem see a comment in A000225.]
(End)

Examples

			First few rows of the triangle T(n, k):
n\k     0    1    2    3   4   5   6  7  8  9 10 11 12 ...
0:      1
1:      3    1
2:      7    3    1
3      15    7    3    1
4:     31   15    7    3   1
5:     63   31   15    7   3   1
6:    127   63   31   15   7   3   1
7:    255  127   63   31  15   7   3  1
8:    511  255  127   63  31  15   7  3  1
9:   1023  511  255  127  63  31  15  7  3  1
10:  2047 1023  511  255 127  63  31 15  7  3  1
11:  4095 2047 1023  511 255 127  63 31 15  7  3  1
12:  8191 4095 2047 1023 511 255 127 63 31 15  7  3  1
... reformatted and extended. - _Wolfdieter Lang_, Oct 28 2019
		

References

  • Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 36-37, Solution, S. 40-41. See also the link below.

Crossrefs

Programs

  • Haskell
    a130330 n k = a130330_row n !! (k-1)
    a130330_row n = a130330_tabl !! (n-1)
    a130330_tabl = iterate (\xs -> (2 * head xs + 1) : xs) [1]
    -- Reinhard Zumkeller, Mar 31 2012
  • Mathematica
    nn=12;a=1/(1- x);b=1/(1-2x);Map[Select[#,#>0&]&,Drop[CoefficientList[Series[a x^2 b/(1-y x),{x,0,nn}],{x,y}],2]]//Grid  (* Geoffrey Critzer, Dec 31 2013 *)

Formula

A130321 * A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...) and A000012 = (1; 1,1; 1,1,1; ...).
In every column k with offset n = k: 2^(m+1) - 1 = A000225(m+1) = (1, 3, 7, 15, ...), for m >= 0.
G.f.: 1/((1-y*x)*(1-x)*(1-2x)). - Geoffrey Critzer, Dec 31 2013
T(n, k) = 2^((n - k) + 1) - 1, n >= 0, k = 0..n. - Wolfdieter Lang, Oct 28 2019

Extensions

More terms from Geoffrey Critzer, Dec 31 2013
Edited by Wolfdieter Lang, Oct 28 2019
Showing 1-10 of 2634 results. Next