cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A131819 A131818 * A000012 as infinite lower triangular matrices. Triangle read by rows, partial sums starting from the right of A131818.

Original entry on oeis.org

1, 4, 2, 8, 5, 3, 13, 9, 7, 4, 19, 14, 12, 9, 5, 26, 20, 18, 15, 11, 6, 34, 27, 25, 22, 18, 13, 7, 43, 35, 33, 30, 26, 21, 15, 8, 53, 44, 42, 39, 35, 30, 24, 17, 9, 64, 54, 52, 49, 45, 40, 34, 27, 19, 10, 76, 65, 63, 60, 56, 51, 45, 38, 30, 21, 11
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2007

Keywords

Comments

Left column = A034856: (1, 4, 8, 13, 19, 26, 34, ...). Row sums = A131820: (1, 6, 16, 33, 59, 96, ...).

Examples

			First few rows of the triangle:
   1;
   4,  2;
   8,  5,  3;
  13,  9,  7,  4;
  19, 14, 12,  9,  5;
  26, 20, 18, 15, 11,  6;
  34, 27, 25, 22, 18, 13,  7;
  ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {m131818 = matrix(nn, nn, n, k, if (k==1, n, if (k <= n, k, 0))); m000012 = matrix(nn, nn, n, k, (k<=n)); m131819 = m131818 * m000012; for (n = 1, nn, for (k = 1, n, print1(m131819[n, k], ", ");););} \\ Michel Marcus, Feb 12 2014

Extensions

More terms from Michel Marcus, Feb 12 2014

A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.

Original entry on oeis.org

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1

Views

Author

Keywords

Comments

Number of 1's in the n X n lower Hessenberg (0,1)-matrix (i.e., the matrix having 1's on or below the superdiagonal and 0's above the superdiagonal).
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Number of binary operations which have to be added to Moisil's algebras to obtain algebraic counterparts of n-valued Łukasiewicz logics. See the Wójcicki and Malinowski book, page 31. - Artur Jasinski, Feb 25 2010
Also (n + 1)!(-1)^(n + 1) times the determinant of the n X n matrix given by m(i,j) = i/(i+1) if i=j and otherwise 1. For example, (5+1)! * ((-1)^(5+1)) * Det[{{1/2, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1}, {1, 1, 3/4, 1, 1}, {1, 1, 1, 4/5, 1}, {1, 1, 1, 1, 5/6}}] = 19 = a(5), and (6+1)! * ((-1)^(6+1)) * Det[{{1/2, 1, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1, 1}, {1, 1, 3/4, 1, 1, 1}, {1, 1, 1, 4/5, 1, 1}, {1, 1, 1, 1, 5/6, 1}, {1, 1, 1, 1, 1, 6/7}}] = 26 = a(6). - John M. Campbell, May 20 2011
2*a(n-1) = n*(n+1) - 4, n>=0, with a(-1) = -2 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 17 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) is not divisible by 3, 5, 7, or 11. - Vladimir Shevelev, Feb 03 2014
With a(0) = 1 and a(1) = 2, a(n-1) is the number of distinct values of 1 +- 2 +- 3 +- ... +- n, for n > 0. - Derek Orr, Mar 11 2015
Also, numbers m such that 8*m+17 is a square. - Bruno Berselli, Sep 16 2015
Omar E. Pol's formula from Apr 23 2008 can be interpreted as the position of an element located on the third diagonal of an triangular array (read by rows) provided n > 1. - Enrique Pérez Herrero, Aug 29 2016
a(n) is the sum of the numerator and denominator of the fraction that is the sum of 2/(n-1) + 2/n; all fractions are reduced and n > 2. - J. M. Bergot, Jun 14 2017
a(n) is also the number of maximal irredundant sets in the (n+2)-path complement graph for n > 1. - Eric W. Weisstein, Apr 12 2018
From Klaus Purath, Dec 07 2020: (Start)
a(n) is not divisible by primes listed in A038890. The prime factors are given in A038889 and the prime terms of the sequence are listed in A124199.
Each odd prime factor p divides exactly 2 out of any p consecutive terms with the exception of 17, which appears only once in such an interval of terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -3 (mod p), see examples.
If A is a sequence satisfying the recurrence t(n) = 5*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 4 or A(0) = -1, A(1) = n-1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i for i>0. (End)
Mark each point on a 4^n grid with the number of points that are visible from the point; for n > 1, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 23 2021
The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the external perimeter and the perimeter of inscribed squares having the cell (1,1) as a unique common vertex. See Spezia link. - Stefano Spezia, May 28 2025

Examples

			From _Bruno Berselli_, Mar 09 2015: (Start)
By the definition (first formula):
----------------------------------------------------------------------
  1       4         8           13            19              26
----------------------------------------------------------------------
                                                              X
                                              X              X X
                                X            X X            X X X
                    X          X X          X X X          X X X X
          X        X X        X X X        X X X X        X X X X X
  X      X X      X X X      X X X X      X X X X X      X X X X X X
          X        X X        X X X        X X X X        X X X X X
----------------------------------------------------------------------
(End)
From _Klaus Purath_, Dec 07 2020: (Start)
Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m.
(1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17.
(2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53.
(3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End)
From _Omar E. Pol_, Aug 08 2021: (Start)
Illustration of initial terms:                             _ _
.                                           _ _           |_|_|_
.                              _ _         |_|_|_         |_|_|_|_
.                   _ _       |_|_|_       |_|_|_|_       |_|_|_|_|_
.          _ _     |_|_|_     |_|_|_|_     |_|_|_|_|_     |_|_|_|_|_|_
.   _     |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.  |_|    |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.
.   1       4         8          13            19              26
------------------------------------------------------------------------ (End)
		

References

  • A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
  • G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.

Crossrefs

Subsequence of A165157.
Triangular numbers (A000217) minus two.
Third diagonal of triangle in A059317.

Programs

  • Haskell
    a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    a := n -> hypergeom([-2, n-1], [1], -1);
    seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *)
    Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
  • Maxima
    A034856(n) := block(
            n-1+(n+1)*n/2
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
    
  • Python
    def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025

Formula

G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = A000217(n-1) + A005408(n-1) = A005843(n-1) + A000124(n-1). (End)
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = A253909(n+3) - A000217(n+3). - David Neil McGrath, May 23 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(n) = A024206(n) + A024206(n+1).
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
a(n) = A000290(n) - A161680(n-1). - Omar E. Pol, Mar 26 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
a(n) = A024916(n) - A244049(n). - Omar E. Pol, Aug 01 2021
a(n) = A000290(n) - A000217(n-2). - Omar E. Pol, Aug 05 2021

Extensions

More terms from Zerinvary Lajos, May 12 2006

A205558 (A204898)/2 = (prime(k)-prime(j))/2; A086802 without its zeros.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 5, 4, 3, 1, 7, 6, 5, 3, 2, 8, 7, 6, 4, 3, 1, 10, 9, 8, 6, 5, 3, 2, 13, 12, 11, 9, 8, 6, 5, 3, 14, 13, 12, 10, 9, 7, 6, 4, 1, 17, 16, 15, 13, 12, 10, 9, 7, 4, 3, 19, 18, 17, 15, 14, 12, 11, 9, 6, 5, 2, 20, 19, 18, 16, 15, 13, 12, 10, 7, 6, 3, 1, 22, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2012

Keywords

Comments

Let p(n) denote the n-th prime. If c is a positive integer, there are infinitely many pairs (k,j) such that c divides p(k)-p(j). The set of differences p(k)-p(j) is ordered as a sequence at A204890. Guide to related sequences:
c....k..........j..........p(k)-p(j).[p(k)-p(j)]/c
It appears that, as rectangular array, this sequence can be described by A(n,k) is the least m such that there are k primes in the set prime(n) + 2*i for {i=1..n}. - Michel Marcus, Mar 29 2023

Examples

			Writing prime(k) as p(k),
p(3)-p(2)=5-3=2
p(4)-p(2)=7-3=4
p(4)-p(3)=7-5=2
p(5)-p(2)=11-3=8
p(5)-p(3)=11-5=6
p(5)-p(4)=11-7=4,
so that the first 6 terms of A205558 are 1,2,1,4,3,2.
The sequence can be regarded as a rectangular array in which row n is given by [prime(n+2+k)-prime(n+1)]/2; a northwest corner follows:
1...2...4...5...7...8....10...13...14...17...19...20
1...3...4...6...7...9....12...13...16...18...19...21
2...3...5...6...8...11...12...15...17...18...20...23
1...3...4...6...9...10...13...15...16...18...21...24
2...3...5...8...9...12...14...15...17...20...23...24
1...3...6...7...10..12...13...15...18...21...22...25
2...5...6...9...11..12...14...17...20...21...24...26
- _Clark Kimberling_, Sep 29 2013
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]              (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]              (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 2; t = d[c]                      (* A080036 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]                  (* A133196 *)
    Table[j[n], {n, 1, z2}]                  (* A131818 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204898 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205558 *)

A355747 Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 58, 116, 320, 772, 2170, 4340, 14112, 28224, 78120, 212004, 612232, 1224464, 3873760, 7747520, 24224608, 64595088, 175452168, 350904336
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 10 multisets:
  {}  {1}  {1,1}  {1,1,1}  {1,1,1,1}
           {1,2}  {1,1,2}  {1,1,1,2}
                  {1,1,3}  {1,1,1,3}
                  {1,2,3}  {1,1,1,4}
                           {1,1,2,2}
                           {1,1,2,3}
                           {1,1,2,4}
                           {1,1,3,4}
                           {1,2,2,3}
                           {1,2,3,4}
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
Counting sequences instead of multisets gives A066843.
The integers themselves are the rows of A131818 (shifted).
For prime indices we have A355733, only prime factors A355744.
For prime factors instead of divisors we have A355746, factors A355537.
A000005 counts divisors.
A000040 lists the prime numbers.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}]
  • Python
    from sympy import divisors
    from itertools import count, islice
    def agen():
        s = {tuple()}
        for n in count(1):
            yield len(s)
            s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n))
    print(list(islice(agen(), 16))) # Michael S. Branicky, Aug 03 2022

Formula

a(n) = A355733(A070826(n)).
a(p) = 2*a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022

Extensions

a(15)-a(21) from Michael S. Branicky, Aug 03 2022
a(22)-a(23) from Michael S. Branicky, Aug 08 2022

A355746 Number of different multisets that can be obtained by choosing a prime index (or a prime factor) of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 20, 20, 20, 26, 26, 36, 58, 116, 116, 140, 140, 280, 280, 384, 384, 536, 536, 536, 844, 1688, 2380, 2716, 2716, 5432, 8484, 10152, 10152, 13308, 13308, 18064, 21616, 43232, 43232, 47648, 47648, 54656, 84480, 114304, 114304
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Examples

			The a(n) multisets for n = 2, 6, 10, 12:
  {1}  {1,1,1,2,3}  {1,1,1,1,1,2,2,3,4}  {1,1,1,1,1,1,2,2,3,4,5}
       {1,1,2,2,3}  {1,1,1,1,2,2,2,3,4}  {1,1,1,1,1,2,2,2,3,4,5}
                    {1,1,1,1,2,2,3,3,4}  {1,1,1,1,1,2,2,3,3,4,5}
                    {1,1,1,2,2,2,3,3,4}  {1,1,1,1,2,2,2,2,3,4,5}
                                         {1,1,1,1,2,2,2,3,3,4,5}
                                         {1,1,1,2,2,2,2,3,3,4,5}
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The integers themselves are the rows of A131818 (shifted).
Counting sequences instead of multisets: A355537, with multiplicity A327486.
Using prime indices instead of 2..n gives A355744, for sequences A355741.
The version for divisors instead of prime factors is A355747.
A000040 lists the prime numbers.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[primeMS/@Range[2,n]]]],{n,15}]
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        s = {(1,)}
        for n in count(2):
            yield len(s)
            s = set(tuple(sorted(t+(d,))) for t in s for d in factorint(n))
    print(list(islice(agen(), 53))) # Michael S. Branicky, Aug 03 2022

Formula

a(n) = A355744(A070826(n)).
a(p) = a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022

Extensions

a(28) and beyond from Michael S. Branicky, Aug 03 2022

A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Comments

Also partial products of A001221 without the first term 0, sum A013939.
For initial terms up to n = 29 we have a(n) = 2^A355538(n). The first non-power of 2 is a(30) = 12288.

Examples

			The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k:
  (1)  (12131)  (121314121)  (12131412151)
       (12132)  (121314123)  (12131412152)
                (121324121)  (12131412351)
                (121324123)  (12131412352)
                             (12132412151)
                             (12132412152)
                             (12132412351)
                             (12132412352)
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Using prime indices instead of 2..n gives A355741, for multisets A355744.
Counting sequences instead of multisets gives A355746.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.

A385614 Numbers of the form x^x + y^y, 1 < x < y.

Original entry on oeis.org

31, 260, 283, 3129, 3152, 3381, 46660, 46683, 46912, 49781, 823547, 823570, 823799, 826668, 870199, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420493, 387420516, 387420745, 387423614, 387467145, 388244032, 404197705, 10000000004
Offset: 1

Views

Author

Sean A. Irvine, Jul 04 2025

Keywords

Comments

Terms are all combinations of 1 < x < y ordered by increasing y then increasing x, since the largest of one y is strictly less than the smallest of the next: (y-1)^(y-1) + y^y < 2^2 + (y+1)^(y+1) for y >= 3. - Kevin Ryde, Jul 06 2025

Examples

			31 is in the sequence because 31 = 2^2 + 3^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=2 + if(r>1, y=3 + s-(rKevin Ryde, Jul 06 2025
    
  • Python
    from math import isqrt, comb
    def A385614(n):
        y = (m:=isqrt(k:=n<<1))+(k>m*(m+1))+2
        x = n-comb(y-2,2)+1
        return x**x+y**y # Chai Wah Wu, Jul 07 2025

Formula

a(n) = x^x + y^y where x=A131818(n+1) and y=A133196(n). - Kevin Ryde, Jul 06 2025
Showing 1-8 of 8 results.