cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A355741 Number of ways to choose a sequence of prime factors, one of each prime index of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355744 at a(169) = 4, A355744(169) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
		

Crossrefs

Positions of 0's are A299174.
The version for all divisors is A355731, firsts A355732.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
The weakly increasing case is A355745, all divisors A355735.
A001414 adds up distinct prime factors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@PrimeNu/@primeMS[n],{n,100}]

Formula

Totally multiplicative with a(prime(k)) = A001221(k).

A355731 Number of ways to choose a sequence of divisors, one of each element of the multiset of prime indices of n (row n of A112798).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 2, 2, 4, 3, 4, 1, 2, 4, 4, 2, 6, 2, 3, 2, 4, 4, 8, 3, 4, 4, 2, 1, 4, 2, 6, 4, 6, 4, 8, 2, 2, 6, 4, 2, 8, 3, 4, 2, 9, 4, 4, 4, 5, 8, 4, 3, 8, 4, 2, 4, 6, 2, 12, 1, 8, 4, 2, 2, 6, 6, 6, 4, 4, 6, 8, 4, 6, 8, 4, 2, 16, 2, 2, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 choices are: (1,1), (1,3), (2,1), (2,3).
The a(18) = 4 choices are: (1,1,1), (1,1,2), (1,2,1), (1,2,2).
		

Crossrefs

Positions of 1's are A000079.
Dominated by A003963 (cf. A049820), with equality at A003586.
Positions of first appearances are A355732.
Counting distinct sequences after sorting gives A355733, firsts A355734.
Requiring the result to be weakly increasing gives A355735, firsts A355736.
Requiring the result to be relatively prime gives A355737, firsts A355738.
Requiring the choices to be distinct gives A355739, zeros A355740.
For prime divisors A355741, prime-powers A355742, weakly increasing A355745.
Choosing divisors of each of 1..n and resorting gives A355747.
An ordered version (using standard order compositions) is A355748.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Length/@Divisors/@primeMS[n],{n,100}]

Formula

a(n) = Product_{k=1..A001222(n)} A000005(A112798(n,k)).

A355732 Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).

Original entry on oeis.org

1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     53: {16}
     21: {2,4}
    311: {64}
     27: {2,2,2}
     49: {4,4}
    159: {2,16}
   8161: {1024}
     63: {2,2,4}
For example, the choices for a(12) = 63 are:
  (1,1,1)  (1,2,2)  (2,1,4)
  (1,1,2)  (1,2,4)  (2,2,1)
  (1,1,4)  (2,1,1)  (2,2,2)
  (1,2,1)  (2,1,2)  (2,2,4)
		

Crossrefs

Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Times@@Length/@Divisors/@primeMS[n],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355733 Number of multisets that can be obtained by choosing a divisor of each prime index of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 7, 2, 2, 5, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 7, 4, 2, 4, 6, 2, 7, 1, 7, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 7, 4, 2, 5, 2, 2, 5, 4, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 multisets are: {1,1}, {1,2}, {1,3}, {2,3}.
The a(18) = 3 multisets are: {1,1,1}, {1,1,2}, {1,2,2}.
		

Crossrefs

Counting all choices of divisors gives A355731, firsts A355732.
Positions of first appearances are A355734.
Choosing weakly increasing divisors gives A355735, firsts A355736.
Choosing only prime divisors gives A355744.
The version choosing a divisor of each number from 1 to n is A355747.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,100}]

A355734 Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k.

Original entry on oeis.org

1, 3, 7, 13, 21, 35, 39, 89, 133, 105, 91, 195, 351, 285, 247, 333, 273, 481, 455, 555, 623, 801, 791, 741, 1359, 1157, 1281, 1335, 1365, 1443, 1977, 1729, 1967, 1869, 2109, 3185, 2373, 2769, 2639, 4361, 3367, 3653, 3885, 3471, 4613, 5883, 5187, 5551, 6327
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355733.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   13: {6}
   21: {2,4}
   35: {3,4}
   39: {2,6}
   89: {24}
  133: {4,8}
  105: {2,3,4}
   91: {4,6}
  195: {2,3,6}
  351: {2,2,2,6}
For example, the choices for a(12) = 195 are:
  {1,1,1}  {1,2,2}  {1,3,6}
  {1,1,2}  {1,2,3}  {2,2,3}
  {1,1,3}  {1,2,6}  {2,3,3}
  {1,1,6}  {1,3,3}  {2,3,6}
		

Crossrefs

Counting all choices of divisors gives A355732, firsts of A355731.
Positions of first appearances in A355733.
Choosing weakly increasing divisors gives A355736, firsts of A355735.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355746 Number of different multisets that can be obtained by choosing a prime index (or a prime factor) of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 20, 20, 20, 26, 26, 36, 58, 116, 116, 140, 140, 280, 280, 384, 384, 536, 536, 536, 844, 1688, 2380, 2716, 2716, 5432, 8484, 10152, 10152, 13308, 13308, 18064, 21616, 43232, 43232, 47648, 47648, 54656, 84480, 114304, 114304
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Examples

			The a(n) multisets for n = 2, 6, 10, 12:
  {1}  {1,1,1,2,3}  {1,1,1,1,1,2,2,3,4}  {1,1,1,1,1,1,2,2,3,4,5}
       {1,1,2,2,3}  {1,1,1,1,2,2,2,3,4}  {1,1,1,1,1,2,2,2,3,4,5}
                    {1,1,1,1,2,2,3,3,4}  {1,1,1,1,1,2,2,3,3,4,5}
                    {1,1,1,2,2,2,3,3,4}  {1,1,1,1,2,2,2,2,3,4,5}
                                         {1,1,1,1,2,2,2,3,3,4,5}
                                         {1,1,1,2,2,2,2,3,3,4,5}
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The integers themselves are the rows of A131818 (shifted).
Counting sequences instead of multisets: A355537, with multiplicity A327486.
Using prime indices instead of 2..n gives A355744, for sequences A355741.
The version for divisors instead of prime factors is A355747.
A000040 lists the prime numbers.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[primeMS/@Range[2,n]]]],{n,15}]
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        s = {(1,)}
        for n in count(2):
            yield len(s)
            s = set(tuple(sorted(t+(d,))) for t in s for d in factorint(n))
    print(list(islice(agen(), 53))) # Michael S. Branicky, Aug 03 2022

Formula

a(n) = A355744(A070826(n)).
a(p) = a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022

Extensions

a(28) and beyond from Michael S. Branicky, Aug 03 2022

A387111 Number of ways to choose a sequence of distinct positive integers, one in the initial interval of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 3, 1, 4, 0, 2, 2, 5, 0, 6, 3, 4, 0, 7, 0, 8, 0, 6, 4, 9, 0, 6, 5, 0, 0, 10, 1, 11, 0, 8, 6, 9, 0, 12, 7, 10, 0, 13, 2, 14, 0, 2, 8, 15, 0, 12, 2, 12, 0, 16, 0, 12, 0, 14, 9, 17, 0, 18, 10, 4, 0, 15, 3, 19, 0, 16, 4, 20, 0, 21, 11, 4, 0, 16, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 75 are (2,3,3), with initial intervals ({1,2},{1,2,3},{1,2,3}), with choices (1,2,3), (1,3,2), (2,1,3), (2,3,1), so a(75) = 4.
		

Crossrefs

Allowing repeated partitions gives A003963.
For constant instead of distinct we have A055396.
For multiset systems see A355529, A355744, A367771, set systems A367901-A367905.
For divisors we have A355739, zeros A355740, strict case of A355731.
For prime factors we have A355741, prime powers A355742, weakly increasing A355745.
For integer partitions we have A387110.
Positions of nonzero terms are A387112 (choosable).
Positions of 0 are A387134 (non-choosable).
A001414 adds up distinct prime divisors, counted by A001221.
A061395 gives greatest prime index.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Range/@prix[n]],UnsameQ@@#&]],{n,100}]

A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Comments

Also partial products of A001221 without the first term 0, sum A013939.
For initial terms up to n = 29 we have a(n) = 2^A355538(n). The first non-power of 2 is a(30) = 12288.

Examples

			The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k:
  (1)  (12131)  (121314121)  (12131412151)
       (12132)  (121314123)  (12131412152)
                (121324121)  (12131412351)
                (121324123)  (12131412352)
                             (12132412151)
                             (12132412152)
                             (12132412351)
                             (12132412352)
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Using prime indices instead of 2..n gives A355741, for multisets A355744.
Counting sequences instead of multisets gives A355746.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]

A355748 Number of ways to choose a sequence of divisors, one of each part of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 4, 2, 2, 2, 2, 1, 2, 3, 4, 2, 4, 4, 4, 2, 3, 2, 4, 2, 2, 2, 2, 1, 4, 2, 6, 3, 4, 4, 4, 2, 6, 4, 8, 4, 4, 4, 4, 2, 2, 3, 4, 2, 4, 4, 4, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 4, 4, 2, 6, 6, 6, 3, 6, 4, 8, 4, 4, 4, 4, 2, 4, 6, 8, 4, 8, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition number 152 in standard order is (3,1,4), and the a(152) = 6 choices are: (1,1,1), (1,1,2), (1,1,4), (3,1,1), (3,1,2), (3,1,4).
		

Crossrefs

Positions of 1's are A000079 (after the first).
The anti-run case is A354578, zeros A354904, firsts A354905.
An unordered version (using prime indices) is A355731:
- firsts A355732,
- resorted A355733,
- weakly increasing A355735,
- relatively prime A355737,
- strict A355739.
A000005 counts divisors.
A003963 multiplies together the prime indices of n.
A005811 counts runs in binary expansion.
A029837 adds up standard compositions, lengths A000120.
A066099 lists the compositions in standard order.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353852 ranks compositions with all distinct run-sums, counted by A353850.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Times@@Length/@Divisors/@stc[n],{n,0,100}]

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.
Showing 1-10 of 13 results. Next