cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A355739 Number of ways to choose a sequence of all different divisors, one of each prime index of n (with multiplicity).

Original entry on oeis.org

1, 1, 2, 0, 2, 1, 3, 0, 2, 1, 2, 0, 4, 2, 3, 0, 2, 0, 4, 0, 4, 1, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 3, 1, 5, 0, 6, 3, 6, 0, 2, 1, 4, 0, 2, 2, 4, 0, 6, 0, 3, 0, 5, 0, 3, 0, 6, 3, 2, 0, 6, 1, 2, 0, 6, 1, 2, 0, 5, 2, 6, 0, 4, 5, 2, 0, 5, 2, 4, 0, 0, 1, 2, 0, 3, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(49) = 6 ways are: (1,2), (1,4), (2,1), (2,4), (4,1), (4,2).
The a(182) = 5 ways are: (1,2,3), (1,2,6), (1,4,2), (1,4,3), (1,4,6).
The a(546) = 2 ways are: (1,2,4,3), (1,2,4,6).
		

Crossrefs

This is the strict version of A355731, firsts A355732.
For relatively prime instead of strict we have A355737, firsts A355738.
Positions of 0's are A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices, positions of 1's A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],UnsameQ@@#&]],{n,100}]

A355741 Number of ways to choose a sequence of prime factors, one of each prime index of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355744 at a(169) = 4, A355744(169) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
		

Crossrefs

Positions of 0's are A299174.
The version for all divisors is A355731, firsts A355732.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
The weakly increasing case is A355745, all divisors A355735.
A001414 adds up distinct prime factors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@PrimeNu/@primeMS[n],{n,100}]

Formula

Totally multiplicative with a(prime(k)) = A001221(k).

A355529 Numbers of which it is not possible to choose a different prime factor of each prime index (with multiplicity).

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Includes all even numbers.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
		

Crossrefs

The odd case is A355535.
The case of all divisors (not just primes) is A355740, zeros of A355739.
These choices are variously counted by A355741, A355744, A355745.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&]

A355740 Numbers of which it is not possible to choose a different divisor of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 50, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is a sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, k is divisible by a member of A370348. - Robert Israel, Feb 15 2024

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
For example, the choices of a divisor of each prime index of 90 are: (1,1,1,1), (1,1,1,3), (1,1,2,1), (1,1,2,3), (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3). But none of these has all distinct elements, so 90 is in the sequence.
		

Crossrefs

Positions of 0's in A355739.
The case of just prime factors (not all divisors) is A355529, odd A355535.
The unordered case is counted by A355733, firsts A355734.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Maple
    filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d;
      F:= ifactors(n)[2];
      F:= map(t -> [pi(t[1]), t[2]], F);
      D:= `union`(seq(divisors(t[1]), t = F));
      F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F);
      if nops(D) < nops(F) then return false fi;
      E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)};
      S:= map(t -> convert(t, name), [op(F), op(D)]);
      E:= map(e -> map(convert, e, name), E);
      G:= Graph(S, E);
      B:= BipartiteMatching(G);
      B[1] = nops(F);
    end proc:
    remove(filter, [$1..200]); # Robert Israel, Feb 15 2024
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Divisors/@primeMS[#]],UnsameQ@@#&]=={}&]

Formula

We have A001221(a(n)) >= A303975(a(n)).

A355731 Number of ways to choose a sequence of divisors, one of each element of the multiset of prime indices of n (row n of A112798).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 2, 2, 4, 3, 4, 1, 2, 4, 4, 2, 6, 2, 3, 2, 4, 4, 8, 3, 4, 4, 2, 1, 4, 2, 6, 4, 6, 4, 8, 2, 2, 6, 4, 2, 8, 3, 4, 2, 9, 4, 4, 4, 5, 8, 4, 3, 8, 4, 2, 4, 6, 2, 12, 1, 8, 4, 2, 2, 6, 6, 6, 4, 4, 6, 8, 4, 6, 8, 4, 2, 16, 2, 2, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 choices are: (1,1), (1,3), (2,1), (2,3).
The a(18) = 4 choices are: (1,1,1), (1,1,2), (1,2,1), (1,2,2).
		

Crossrefs

Positions of 1's are A000079.
Dominated by A003963 (cf. A049820), with equality at A003586.
Positions of first appearances are A355732.
Counting distinct sequences after sorting gives A355733, firsts A355734.
Requiring the result to be weakly increasing gives A355735, firsts A355736.
Requiring the result to be relatively prime gives A355737, firsts A355738.
Requiring the choices to be distinct gives A355739, zeros A355740.
For prime divisors A355741, prime-powers A355742, weakly increasing A355745.
Choosing divisors of each of 1..n and resorting gives A355747.
An ordered version (using standard order compositions) is A355748.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Length/@Divisors/@primeMS[n],{n,100}]

Formula

a(n) = Product_{k=1..A001222(n)} A000005(A112798(n,k)).

A239312 Number of condensed integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
Offset: 0

Views

Author

Clark Kimberling, Mar 15 2014

Keywords

Comments

Suppose that p is a partition of n. Let x(1), x(2), ..., x(k) be the distinct parts of p, and let m(i) be the multiplicity of x(i) in p. Let c(p) be the partition {m(1)*x(1), m(2)*x(2), ..., x(k)*m(k)} of n. Call a partition q of n a condensed partition of n if q = c(p) for some partition p of n. Then a(n) is the number of distinct condensed partitions of n. Note that c(p) = p if and only if p has distinct parts and that condensed partitions can have repeated parts.
Also the number of integer partitions of n such that it is possible to choose a different divisor of each part. For example, the partition (6,4,4,1) has choices (3,2,4,1), (3,4,2,1), (6,2,4,1), (6,4,2,1) so is counted under a(15). - Gus Wiseman, Mar 12 2024

Examples

			a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From _Gus Wiseman_, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (2,2)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                   (3,1)  (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (3,2,2)  (7,1)    (8,1)
                                          (4,2,1)  (3,3,2)  (4,3,2)
                                                   (4,2,2)  (4,4,1)
                                                   (4,3,1)  (5,2,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
(End)
		

Crossrefs

The strict case is A000009.
These partitions have ranks A368110, complement A355740.
The complement is counted by A370320.
The version for prime factors (not all divisors) is A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370805, complement A370804.
The version for factorizations is A370814, complement A370813.
A000005 counts divisors.
A000041 counts integer partitions.
A237685 counts partitions of depth 1, or A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, {[]},
          `if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
           sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
        end:
    a:= n-> nops(b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 01 2019
  • Mathematica
    u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0,   30}]
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]], {n,0,30}] (* Gus Wiseman, Mar 12 2024 *)

Extensions

Typo in definition corrected by Manfred Scheucher, May 29 2015
Name edited by Gus Wiseman, Mar 13 2024

A355744 Number of multisets that can be obtained by choosing a prime factor of each prime index of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355741 at a(169) = 3, A355741(169) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(169) = 3 multisets are: {2,2}, {2,3}, {3,3}.
The a(507) = 3 multisets are: {2,2,2}, {2,2,3}, {2,3,3}.
		

Crossrefs

Choosing from all divisors gives A355733, firsts A355734.
Counting sequences instead of multisets gives A355741.
Choosing weakly increasing sequences of divisors gives A355745.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A324850 lists numbers divisible by the product of their prime indices.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[primeMS/@primeMS[n]]]],{n,100}]

A355732 Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).

Original entry on oeis.org

1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     53: {16}
     21: {2,4}
    311: {64}
     27: {2,2,2}
     49: {4,4}
    159: {2,16}
   8161: {1024}
     63: {2,2,4}
For example, the choices for a(12) = 63 are:
  (1,1,1)  (1,2,2)  (2,1,4)
  (1,1,2)  (1,2,4)  (2,2,1)
  (1,1,4)  (2,1,1)  (2,2,2)
  (1,2,1)  (2,1,2)  (2,2,4)
		

Crossrefs

Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Times@@Length/@Divisors/@primeMS[n],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A368110 Numbers of which it is possible to choose a different divisor of each prime index.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is no sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, there is no divisor of k in A370348. - Robert Israel, Feb 15 2024

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  30: {1,2,3}
		

Crossrefs

Partitions of this type are counted by A239312, complement A370320.
Positions of nonzero terms in A355739.
Complement of A355740.
For just prime divisors we have A368100, complement A355529 (odd A355535).
A000005 counts divisors.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Maple
    filter:= proc(n) uses numtheory, GraphTheory; local B,S,F,D,E,G,t,d;
      F:= ifactors(n)[2];
      F:= map(t -> [pi(t[1]),t[2]], F);
      D:= `union`(seq(divisors(t[1]), t = F));
      F:= map(proc(t) local i;seq([t[1],i],i=1..t[2]) end proc,F);
      if nops(D) < nops(F) then return false fi;
      E:= {seq(seq({t,d},d=divisors(t[1])),t = F)};
      S:= map(t -> convert(t,name), [op(F),op(D)]);
      E:= map(e -> map(convert,e,name),E);
      G:= Graph(S,E);
      B:= BipartiteMatching(G);
      B[1] = nops(F);
    end proc:
    select(filter, [$1..100]); # Robert Israel, Feb 15 2024
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]!={}&]

Formula

Heinz numbers of the partitions counted by A239312.

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).
Showing 1-10 of 38 results. Next