A355741 Number of ways to choose a sequence of prime factors, one of each prime index of n.
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1
Examples
The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
Links
- Wikipedia, Cartesian product.
Crossrefs
Positions of 0's are A299174.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
A003963 multiplies together the prime indices of n.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Times@@PrimeNu/@primeMS[n],{n,100}]
Formula
Totally multiplicative with a(prime(k)) = A001221(k).
Comments