cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A131820 Row sums of triangle A131819.

Original entry on oeis.org

1, 6, 16, 33, 59, 96, 146, 211, 293, 394, 516, 661, 831, 1028, 1254, 1511, 1801, 2126, 2488, 2889, 3331, 3816, 4346, 4923, 5549, 6226, 6956, 7741, 8583, 9484, 10446, 11471, 12561, 13718, 14944, 16241, 17611, 19056, 20578, 22179, 23861, 25626
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2007

Keywords

Comments

Let M(n) be the n-th square matrix whose (i,j)-entry equals i^2/(i^2+1) if i=j and equals 1 otherwise. Then a(n) = (-1)^(n+1) * gamma(1-i+n) * gamma(1+i+n) * sinh(Pi)/Pi times the determinant of M(n). - John M. Campbell, Sep 07 2011

Examples

			a(4) = 33 = (1, 3, 3, 1) dot (1, 5, 5, 2) = (1 + 15 + 15 + 2).
a(4) = 33 = sum of row 4 terms of triangle A131819: (13 + 9 + 7 + 4).
		

Crossrefs

Programs

  • Maple
    a:= n-> (7+(3+2*n)*n)*n/6-1:
    seq(a(n), n=1..40);  # Alois P. Heinz, May 04 2009
  • Mathematica
    Table[n^3/3 + n^2/2 + 7*n/6 - 1, {n, 100}]

Formula

Binomial transform of (1, 5, 5, 2, 0, 0, 0, ...).
From Alois P. Heinz, May 04 2009: (Start)
a(n) = n^3/3 + n^2/2 + (7/6)*n - 1.
a(n) = -1 + Sum_{k=1..n} (k^2+1).
a(n) = A000330(n) + A000027(n) - A000012(n).
G.f.: x*(1 + 2*x - 2*x^2 + x^3)/(1 - x)^4. (End)
a(n) = n^2 + a(n-1) + 1, n > 1. - Gary Detlefs, Jun 29 2010
From Gary Detlefs, Jun 30 2010: (Start)
a(n) = (2n^3 + 3n^2 + 7n - 6)/6, n > 0.
a(n) = A081489(n) + A005563(n-1), n > 0. (End)
E.g.f.: 1 + exp(x)*(2*x^3 + 9*x^2 + 12*x - 6)/6. - Stefano Spezia, Mar 02 2025

Extensions

More terms from Alois P. Heinz, May 04 2009
Showing 1-1 of 1 results.