A131820 Row sums of triangle A131819.
1, 6, 16, 33, 59, 96, 146, 211, 293, 394, 516, 661, 831, 1028, 1254, 1511, 1801, 2126, 2488, 2889, 3331, 3816, 4346, 4923, 5549, 6226, 6956, 7741, 8583, 9484, 10446, 11471, 12561, 13718, 14944, 16241, 17611, 19056, 20578, 22179, 23861, 25626
Offset: 1
Examples
a(4) = 33 = (1, 3, 3, 1) dot (1, 5, 5, 2) = (1 + 15 + 15 + 2). a(4) = 33 = sum of row 4 terms of triangle A131819: (13 + 9 + 7 + 4).
Programs
-
Maple
a:= n-> (7+(3+2*n)*n)*n/6-1: seq(a(n), n=1..40); # Alois P. Heinz, May 04 2009
-
Mathematica
Table[n^3/3 + n^2/2 + 7*n/6 - 1, {n, 100}]
Formula
Binomial transform of (1, 5, 5, 2, 0, 0, 0, ...).
From Alois P. Heinz, May 04 2009: (Start)
a(n) = n^3/3 + n^2/2 + (7/6)*n - 1.
a(n) = -1 + Sum_{k=1..n} (k^2+1).
G.f.: x*(1 + 2*x - 2*x^2 + x^3)/(1 - x)^4. (End)
a(n) = n^2 + a(n-1) + 1, n > 1. - Gary Detlefs, Jun 29 2010
From Gary Detlefs, Jun 30 2010: (Start)
a(n) = (2n^3 + 3n^2 + 7n - 6)/6, n > 0.
E.g.f.: 1 + exp(x)*(2*x^3 + 9*x^2 + 12*x - 6)/6. - Stefano Spezia, Mar 02 2025
Extensions
More terms from Alois P. Heinz, May 04 2009
Comments