A033484 a(n) = 3*2^n - 2.
1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470
Offset: 0
Examples
Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110, G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
References
- J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 3, 10.
- Dennis E. Davenport, Shakuan K. Frankson, Louis W. Shapiro, and Leon C. Woodson, An Invitation to the Riordan Group, Enum. Comb. Appl. (2024) Vol. 4, No. 3, Art. #S2S1. See p. 22.
- Erik D. Demaine et al., Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012, 2014. See p. 8, actually length(Sn) is 2^n+2^(n-1)-2, that is, a(n-1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Egor Lappo and Noah A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
GAP
List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
-
Haskell
a033484 = (subtract 2) . (* 3) . (2 ^) a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1 -- Reinhard Zumkeller, Apr 23 2013
-
Magma
[3*2^n-2: n in [1..36]]; // Vincenzo Librandi, Nov 22 2010
-
Maple
with(combinat):a:=n->stirling2(n,2)+stirling2(n+1,2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007 a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
-
Mathematica
Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *) (* Start from Eric W. Weisstein, Sep 21 2017 *) 3*2^Range[0, 35] - 2 LinearRecurrence[{3, -2}, {1, 4}, 36] CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
-
PARI
a(n) = 3<
Charles R Greathouse IV, Nov 02 2011 -
Sage
[3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
Formula
G.f.: (1+x)/(1-3*x+2*x^2).
a(n) = 2*(a(n-1) + 1) for n>0, with a(0)=1.
a(n) = A007283(n) - 2.
G.f. is equivalent to (1-2*x-3*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Paul Barry, Apr 28 2004
From Reinhard Zumkeller, Oct 09 2004: (Start)
Row sums of triangle A130452. - Gary W. Adamson, May 26 2007
Row sums of triangle A131110. - Gary W. Adamson, Jun 15 2007
Binomial transform of (1, 3, 3, 3, ...). - Gary W. Adamson, Oct 17 2007
Row sums of triangle A051597 (a triangle generated from Pascal's rule given right and left borders = 1, 2, 3, ...). - Gary W. Adamson, Nov 04 2007
Equals A132776 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = Sum_{k=0..n} A112468(n,k)*3^k. - Philippe Deléham, Feb 23 2014
a(n) = -(2^n) * A036563(1-n) for all n in Z. - Michael Somos, Jul 04 2017
E.g.f.: 3*exp(2*x) - 2*exp(x). - G. C. Greubel, Nov 18 2019
Comments