A048489
a(n) = 7 * 2^n - 6.
Original entry on oeis.org
1, 8, 22, 50, 106, 218, 442, 890, 1786, 3578, 7162, 14330, 28666, 57338, 114682, 229370, 458746, 917498, 1835002, 3670010, 7340026, 14680058, 29360122, 58720250, 117440506, 234881018, 469762042, 939524090, 1879048186
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jim Bumgardner, Variations of the Componium, 2013
- S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
a(n)=T(6, n), array T given by
A048483.
n-th difference of a(n), a(n-1), ..., a(0) is (7, 7, 7, ...).
-
A048489:=n->7*2^n-6: seq(A048489(n), n=0..40); # Wesley Ivan Hurt, Apr 18 2017
-
CoefficientList[Series[(1 + 5 x)/((2 x - 1) (x - 1)), {x, 0, 28}], x] (* Michael De Vlieger, May 22 2018 *)
7*2^Range[0,30]-6 (* or *) LinearRecurrence[{3,-2},{1,8},30] (* Harvey P. Dale, May 19 2019 *)
-
a(n)=7<Charles R Greathouse IV, Dec 10 2013
A131112
T(n,k) = 4*binomial(n,k) - 3*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
1, 4, 1, 4, 8, 1, 4, 12, 12, 1, 4, 16, 24, 16, 1, 4, 20, 40, 40, 20, 1, 4, 24, 60, 80, 60, 24, 1, 4, 28, 84, 140, 140, 84, 28, 1, 4, 32, 112, 224, 280, 224, 112, 32, 1, 4, 36, 144, 336, 504, 504, 336, 144, 36, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
4, 1;
4, 8, 1;
4, 12, 12, 1;
4, 16, 24, 16, 1;
4, 20, 40, 40, 20, 1;
...
-
T:= function(n,k)
if k=n then return 1;
else return 4*Binomial(n,k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
[k eq n select 1 else 4*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
seq(seq(`if`(k=n, 1, 4*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Table[If[k==n, 1, 4*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
T(n,k) = if(k==n, 1, 4*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
def T(n, k):
if (k==n): return 1
else: return 4*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)]
# G. C. Greubel, Nov 18 2019
A131113
T(n,k) = 5*binomial(n,k) - 4*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
5, 1;
5, 10, 1;
5, 15, 15, 1;
5, 20, 30, 20, 1;
5, 25, 50, 50, 25, 1;
5, 30, 75, 100, 75, 30, 1;
...
-
T:= function(n,k)
if k=n then return 1;
else return 5*Binomial(n,k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
[k eq n select 1 else 5*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
seq(seq(`if`(k=n, 1, 5*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Table[If[k==n, 1, 5*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
T(n,k) = if(k==n, 1, 5*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
def T(n, k):
if k == n: return 1
else: return 5*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)]
# G. C. Greubel, Nov 18 2019
A131114
T(n,k) = 6*binomial(n,k) - 5*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
1, 6, 1, 6, 12, 1, 6, 18, 18, 1, 6, 24, 36, 24, 1, 6, 30, 60, 60, 30, 1, 6, 36, 90, 120, 90, 36, 1, 6, 42, 126, 210, 210, 126, 42, 1, 6, 48, 168, 336, 420, 336, 168, 48, 1, 6, 54, 216, 504, 756, 756, 504, 216, 54, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
6, 1;
6, 12, 1;
6, 18, 18, 1;
6, 24, 36, 24, 1;
6, 30, 60, 60, 30, 1;
6, 36, 90, 120, 90, 36, 1;
...
-
T:= function(n,k)
if k=n then return 1;
else return 6*Binomial(n,k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
[k eq n select 1 else 6*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
seq(seq(`if`(k=n, 1, 6*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Table[If[k==n, 1, 6*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
T(n,k) = if(k==n, 1, 6*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
def T(n, k):
if (k==n): return 1
else: return 6*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
A131111
T(n, k) = 3*binomial(n,k) - 2*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
1, 3, 1, 3, 6, 1, 3, 9, 9, 1, 3, 12, 18, 12, 1, 3, 15, 30, 30, 15, 1, 3, 18, 45, 60, 45, 18, 1, 3, 21, 63, 105, 105, 63, 21, 1, 3, 24, 84, 168, 210, 168, 84, 24, 1, 3, 27, 108, 252, 378, 378, 252, 108, 27, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
3, 1;
3, 6, 1;
3, 9, 9, 1;
3, 12, 18, 12, 1;
3, 15, 30, 30, 15, 1;
3, 18, 45, 60, 45, 18, 1;
...
-
T:= function(n,k)
if k=n then return 1;
else return 3*Binomial(n,k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
[k eq n select 1 else 3*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
seq(seq(`if`(k=n, 1, 3*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Table[If[k==n, 1, 3*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
T(n,k) = if(k==n, 1, 3*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
@CachedFunction
def T(n, k):
if (k==n): return 1
else: return 3*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
A168622
Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 21, 21, 1;
1, 28, 42, 28, 1;
1, 35, 70, 70, 35, 1;
1, 42, 105, 140, 105, 42, 1;
1, 49, 147, 245, 245, 147, 49, 1;
1, 56, 196, 392, 490, 392, 196, 56, 1;
1, 63, 252, 588, 882, 882, 588, 252, 63, 1;
1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
-
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
[A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
(* First program *)
p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
(* Second program *)
A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
def A168622(n,k):
if k==0 or k==n: return 1
else: return 7*binomial(n,k)
print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
Showing 1-6 of 6 results.
Comments