cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A048489 a(n) = 7 * 2^n - 6.

Original entry on oeis.org

1, 8, 22, 50, 106, 218, 442, 890, 1786, 3578, 7162, 14330, 28666, 57338, 114682, 229370, 458746, 917498, 1835002, 3670010, 7340026, 14680058, 29360122, 58720250, 117440506, 234881018, 469762042, 939524090, 1879048186
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitev, Nov 13 2004
Row sums of triangle A131115. - N. J. A. Sloane, Nov 10 2007
Equals binomial transform of [1, 7, 7, 7, ...]. - Gary W. Adamson, Apr 28 2008
Number of variations of a Componium barrel which produces n phrases. This sequence describes the variations produced by the Componium, a historical mechanical organ. Another way of describing it is: Number of base 8 n-digit numbers produced by repeating or advancing along this 14-step cycle: (0,1,2,3,4,5,6,7,6,5,4,3,2,1). Subset of A126362. - Jim Bumgardner, Dec 10 2013
a(n) = the sum of the terms in row(n) in a triangle with first column T(n,0)=
1+2*n and diagonal T(n,n)=1+4*n with T(i,j)=T(i-1,j-1) + T(i-1,j). - J. M. Bergot, May 11 2018

Crossrefs

a(n)=T(6, n), array T given by A048483.
n-th difference of a(n), a(n-1), ..., a(0) is (7, 7, 7, ...).
Cf. A131115.

Programs

  • Maple
    A048489:=n->7*2^n-6: seq(A048489(n), n=0..40); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    CoefficientList[Series[(1 + 5 x)/((2 x - 1) (x - 1)), {x, 0, 28}], x] (* Michael De Vlieger, May 22 2018 *)
    7*2^Range[0,30]-6 (* or *) LinearRecurrence[{3,-2},{1,8},30] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    a(n)=7<Charles R Greathouse IV, Dec 10 2013

Formula

a(n) = A000079(n)*7-6 = A005009(n)-6. - Omar E. Pol, Dec 21 2008
a(n) = 2*a(n-1)+6 with n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
G.f.: ( 1+5*x ) / ( (2*x-1)*(x-1) ). - R. J. Mathar, Oct 21 2012
a(n) = A063757(2*n). - Philippe Deléham, Apr 13 2013

A131112 T(n,k) = 4*binomial(n,k) - 3*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 4, 1, 4, 8, 1, 4, 12, 12, 1, 4, 16, 24, 16, 1, 4, 20, 40, 40, 20, 1, 4, 24, 60, 80, 60, 24, 1, 4, 28, 84, 140, 140, 84, 28, 1, 4, 32, 112, 224, 280, 224, 112, 32, 1, 4, 36, 144, 336, 504, 504, 336, 144, 36, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  4,  1;
  4,  8,  1;
  4, 12, 12,  1;
  4, 16, 24, 16,  1;
  4, 20, 40, 40, 20, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 4*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 4*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq(`if`(k=n, 1, 4*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n, 1, 4*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 4*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return 4*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)]
    # G. C. Greubel, Nov 18 2019
    

Formula

T(n,k) = 4*A007318(n,k) - 3*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
n-th row sum = A036563(n+2) = 2^(n+2) - 3.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 3*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021

A131113 T(n,k) = 5*binomial(n,k) - 4*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums = A048487: (1, 6, 16, 36, 76, 156, ...).

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  5,  1;
  5, 10,  1;
  5, 15, 15,  1;
  5, 20, 30,  20,  1;
  5, 25, 50,  50, 25,  1;
  5, 30, 75, 100, 75, 30, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 5*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 5*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq(`if`(k=n, 1, 5*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n, 1, 5*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 5*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    def T(n, k):
        if k == n: return 1
        else: return 5*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)]
    # G. C. Greubel, Nov 18 2019
    

Formula

T(n,k) = 5*A007318(n,k) - 4*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 4*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021

A131114 T(n,k) = 6*binomial(n,k) - 5*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 6, 1, 6, 12, 1, 6, 18, 18, 1, 6, 24, 36, 24, 1, 6, 30, 60, 60, 30, 1, 6, 36, 90, 120, 90, 36, 1, 6, 42, 126, 210, 210, 126, 42, 1, 6, 48, 168, 336, 420, 336, 168, 48, 1, 6, 54, 216, 504, 756, 756, 504, 216, 54, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums give A048488.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  6,  1;
  6, 12,  1;
  6, 18, 18,   1;
  6, 24, 36,  24,  1;
  6, 30, 60,  60, 30,  1;
  6, 36, 90, 120, 90, 36, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 6*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 6*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq(`if`(k=n, 1, 6*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n, 1, 6*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 6*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return 6*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

T(n,k) = 6*A007318(n,k) - 5*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 5*x - x*y)/((1 - x*y)*(1 - x - x*y)).

A131111 T(n, k) = 3*binomial(n,k) - 2*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 3, 1, 3, 6, 1, 3, 9, 9, 1, 3, 12, 18, 12, 1, 3, 15, 30, 30, 15, 1, 3, 18, 45, 60, 45, 18, 1, 3, 21, 63, 105, 105, 63, 21, 1, 3, 24, 84, 168, 210, 168, 84, 24, 1, 3, 27, 108, 252, 378, 378, 252, 108, 27, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums = A033484: (1, 4, 10, 22, 46, ...) = 3*2^n - 2.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  3,  1;
  3,  6,  1;
  3,  9,  9,  1;
  3, 12, 18, 12,  1;
  3, 15, 30, 30, 15,  1;
  3, 18, 45, 60, 45, 18, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 3*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 3*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq(`if`(k=n, 1, 3*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n, 1, 3*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 3*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return 3*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

T(n,k) = 3*A007318(n,k) - 2*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 2*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021

A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 14,   1;
  1, 21,  21,   1;
  1, 28,  42,  28,    1;
  1, 35,  70,  70,   35,    1;
  1, 42, 105, 140,  105,   42,    1;
  1, 49, 147, 245,  245,  147,   49,   1;
  1, 56, 196, 392,  490,  392,  196,  56,   1;
  1, 63, 252, 588,  882,  882,  588, 252,  63,  1;
  1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
		

Crossrefs

Columns (essentially): A008589 (k=1), A024966 (k=2).

Programs

  • Magma
    A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
    [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
    (* Second program *)
    A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
    Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
  • SageMath
    def A168622(n,k):
        if k==0 or k==n: return 1
        else: return 7*binomial(n,k)
    print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025

Formula

From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)
Showing 1-6 of 6 results.