cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A048483 Array read by antidiagonals: T(k,n) = (k+1)2^n - k.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 31, 22, 13, 6, 1, 64, 63, 46, 29, 16, 7, 1, 128, 127, 94, 61, 36, 19, 8, 1, 256, 255, 190, 125, 76, 43, 22, 9, 1, 512, 511, 382, 253, 156, 91, 50, 25, 10, 1, 1024, 1023, 766, 509, 316, 187
Offset: 0

Views

Author

Keywords

Comments

n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is k+1, for n=1,2,3,...; k=0,1,2,...

Examples

			1 2 4 8 16 32 ...
1 3 7 15 31 63 ...
1 4 10 22 46 94 ...
1 5 13 29 61 125 ...
1 6 16 36 76 156 ...
		

Crossrefs

Rows are A000079 (k=0), A000225 (k=1), A033484 (k=2), A036563 (k=3), A048487 (k=4), A048488 (k=5), A048489 (k=6), A048490 (k=7), A048491 (k=8).
Main diagonal is A048493. Cf. A048494.

Formula

G.f.: (1-x+kx)/[(1-x)(1-2x)]. E.g.f.: (k+1)*exp(2x) - k*exp(x).
Recurrences: T(k, n) = 2T(k, n-1)+k = T(k-1, n)+2^n-1, T(k, 0) = 1.

Extensions

Edited by Ralf Stephan, Feb 05 2004

A099003 Number of 4 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0).

Original entry on oeis.org

1, 16, 46, 106, 226, 466, 946, 1906, 3826, 7666, 15346, 30706, 61426, 122866, 245746, 491506, 983026, 1966066, 3932146, 7864306, 15728626, 31457266, 62914546, 125829106, 251658226, 503316466, 1006632946, 2013265906, 4026531826
Offset: 0

Views

Author

Sergey Kitaev, Nov 13 2004

Keywords

Comments

An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^(m+n) - 2^m - 2^n + 2.
Binomial transform of 1,15,15,... (15 infinitely repeated). - Gary W. Adamson, Apr 29 2008
The binomial transform of [1, c, c, c, ...] has the terms a(n) = 1 - c + c*2^(n-1) if the offset 1 is chosen. The o.g.f. of the a(n) is x*(1+(c-2)x)/((2x-1)*(x-1)). This applies to A139634 with c=10, to A139635 with c=11, to A139697 with c=12, to A139698 with c=25 and to A099003, A139700, A139701 accordingly. - R. J. Mathar, May 11 2008

Crossrefs

Cf. A048489 (m=3).

Programs

  • Mathematica
    LinearRecurrence[{3,-2},{1,16},40] (* Harvey P. Dale, May 20 2018 *)

Formula

a(n) = 15*2^n - 14.
O.g.f.: (1+13x)/((x-1)(2x-1)). - R. J. Mathar, May 06 2008

A131115 Triangle read by rows: T(n,k) = 7*binomial(n,k) for 1 <= k <= n with T(n,n) = 1 for n >= 0.

Original entry on oeis.org

1, 7, 1, 7, 14, 1, 7, 21, 21, 1, 7, 28, 42, 28, 1, 7, 35, 70, 70, 35, 1, 7, 42, 105, 140, 105, 42, 1, 7, 49, 147, 245, 245, 147, 49, 1, 7, 56, 196, 392, 490, 392, 196, 56, 1, 7, 63, 252, 588, 882, 882, 588, 252, 63, 1, 7, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums give A048489.
Non-diagonal entries of Pascal's triangle are multiplied by 7. - Emeric Deutsch, Jun 20 2007
The matrix inverse starts
1;
-7, 1;
91, -14, 1;
-1771, 273, -21, 1;
45955, -7084, 546, -28, 1;
-1490587, 229775, -17710, 910, -35, 1;
58018051, -8943522, 689325, -35420, 1365, -42, 1;
-2634606331, 406126357, -31302327, 1608425, -61985, 1911, -49, 1;
... - R. J. Mathar, Mar 15 2013

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  7,  1;
  7, 14,  1;
  7, 21, 21,  1;
  7, 28, 42, 28,  1;
  7, 35, 70, 70, 35, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 7*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 7*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T := proc (n, k) if k < n then 7*binomial(n, k) elif k = n then 1 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[If[k==n, 1, 7*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k)=if(k==n,1,7*binomial(n,k)) \\ Charles R Greathouse IV, Jan 16 2012
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return 7*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

G.f.: (1 + 6*x - t*x)/((1-t*x)*(1-x-t*x)). - Emeric Deutsch, Jun 20 2007

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A288732 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 18, 22, 26, 34, 42, 50, 58, 74, 90, 106, 122, 154, 186, 218, 250, 314, 378, 442, 506, 634, 762, 890, 1018, 1274, 1530, 1786, 2042, 2554, 3066, 3578, 4090, 5114, 6138, 7162, 8186, 10234, 12282, 14330, 16378, 20474, 24570, 28666, 32762
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2017

Keywords

Comments

Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->1000, 10->01, starting with 00; see A288729.
From Michel Dekking, Mar 25 2018: (Start)
Note that a(n) - a(n-1) = 2*[a(n-4) - a(n-5)] for n>4.
It follows that this sequence is a union of four simple sequences:
a(4k-4) = 4*2^k - 6 = A131130(k) for k = 1,2,3,...
a(4k-3) = 5*2^k - 6 = A020714(k) - 6 for k = 1,2,3...
a(4k-2) = 6*2^k - 6 = A007283(k+1) - 6 for k = 1,2,3, ...
a(4k-1) = 7*2^k - 6 = A048489(k) for k = 1,2,3...
(End)

Crossrefs

Cf. A288729.

Programs

  • GAP
    a:=[2,4,6,8,10];; for n in [6..45] do a[n]:=a[n-1]+2*a[n-4]-2*a[n-5]; od; a; # Muniru A Asiru, Mar 22 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5),
    a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1, 0, 0, 2, -2}, {2, 4, 8, 8, 10}, 40]
  • PARI
    x='x+O('x^99); Vec(2*(1+x+x^2+x^3-x^4)/(1-x-2*x^4+2*x^5)) \\ Altug Alkan, Mar 22 2018

Formula

a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.
G.f.: -((2*(-1 - x - x^2 - x^3 + x^4))/(1 - x - 2*x^4 + 2*x^5)).

Extensions

a(41)-a(49) from Muniru A Asiru, Mar 22 2018

A062001 Table by antidiagonals of n-Stohr sequences: T(n,k) is least positive integer not the sum of at most n distinct terms in the n-th row from T(n,1) through to T(n,k-1).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 7, 4, 2, 1, 6, 10, 8, 4, 2, 1, 7, 13, 15, 8, 4, 2, 1, 8, 16, 22, 16, 8, 4, 2, 1, 9, 19, 29, 31, 16, 8, 4, 2, 1, 10, 22, 36, 46, 32, 16, 8, 4, 2, 1, 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1, 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1, 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Examples

			Array begins as:
  1, 2, 3, 4,  5,  6,  7,   8,   9, ... A000027;
  1, 2, 4, 7, 10, 13, 16,  19,  22, ... A033627;
  1, 2, 4, 8, 15, 22, 29,  36,  43, ... A026474;
  1, 2, 4, 8, 16, 31, 46,  61,  76, ... A051039;
  1, 2, 4, 8, 16, 32, 63,  94, 125, ... A051040;
  1, 2, 4, 8, 16, 32, 64, 127, 190, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 255, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
Antidiagonal triangle begins as:
   1;
   2,  1;
   3,  2,  1;
   4,  4,  2,  1;
   5,  7,  4,  2,   1;
   6, 10,  8,  4,   2,   1;
   7, 13, 15,  8,   4,   2,  1;
   8, 16, 22, 16,   8,   4,  2,  1;
   9, 19, 29, 31,  16,   8,  4,  2,  1;
  10, 22, 36, 46,  32,  16,  8,  4,  2, 1;
  11, 25, 43, 61,  63,  32, 16,  8,  4, 2, 1;
  12, 28, 50, 76,  94,  64, 32, 16,  8, 4, 2, 1;
  13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1;
		

Crossrefs

Diagonals include A000079, A000225, A033484, A036563, A048487.
A048483 can be seen as half this table.

Programs

  • Mathematica
    T[n_, k_]:= If[kG. C. Greubel, May 03 2022 *)
  • SageMath
    def A062001(n,k):
        if (kA062001(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, May 03 2022

Formula

If k <= n+1 then A(n, k) = 2^(k-1), while if k > n+1, A(n, k) = (2^n - 1)*(k - n) + 1 (array).
T(n, k) = A(k, n-k+1) (antidiagonals).
T(2*n-1, n) = A000079(n-1), n >= 1.
T(2*n, n) = A000079(n), n >= 1.
T(2*n+1, n) = A000225(n+1), n >= 1.
T(2*n+2, n) = A033484(n), n >= 1.
T(2*n+3, n) = A036563(n+3), n >= 1.
T(2*n+4, n) = A048487(n), n >= 1.
From G. C. Greubel, May 03 2022: (Start)
T(n, k) = (2^k - 1)*(n-2*k+1) + 1 for k < n/2, otherwise 2^(n-k).
T(2*n+5, n) = A048488(n), n >= 1.
T(2*n+6, n) = A048489(n), n >= 1.
T(2*n+7, n) = A048490(n), n >= 1.
T(2*n+8, n) = A048491(n), n >= 1.
T(2*n+9, n) = A139634(n), n >= 1.
T(2*n+10, n) = A139635(n), n >= 1.
T(2*n+11, n) = A139697(n), n >= 1. (End)

A063757 G.f.: (1+3*x+2*x^2)/((1-x)*(1-2*x^2)).

Original entry on oeis.org

1, 4, 8, 14, 22, 34, 50, 74, 106, 154, 218, 314, 442, 634, 890, 1274, 1786, 2554, 3578, 5114, 7162, 10234, 14330, 20474, 28666, 40954, 57338, 81914, 114682, 163834, 229370, 327674, 458746, 655354, 917498, 1310714, 1835002, 2621434
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 158.

Programs

  • Mathematica
    CoefficientList[Series[(1+3x+2x^2)/((1-x)(1-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,-2},{1,4,8},41] (* Harvey P. Dale, Jun 05 2012 *)

Formula

a(0)=1, a(1)=4, a(2)=8, a(n)=a(n-1)+2*a(n-2)-2*a(n-3) From Harvey P. Dale, Jun 05 2012
a(n)=2^((n-3)/2)*((5*Sqrt[2]-7)*(-1)^n+7+5*Sqrt[2])-6 From Harvey P. Dale, Jun 05 2012
a(2*n) = 7*2^n - 6 = A048489(n), a(2*n+1) = 10*2^n - 6 = A020714(n+1) - 6, a(n) = A070875(n+1) - 6. - Philippe Deléham, Apr 13 2013

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020

A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 14,   1;
  1, 21,  21,   1;
  1, 28,  42,  28,    1;
  1, 35,  70,  70,   35,    1;
  1, 42, 105, 140,  105,   42,    1;
  1, 49, 147, 245,  245,  147,   49,   1;
  1, 56, 196, 392,  490,  392,  196,  56,   1;
  1, 63, 252, 588,  882,  882,  588, 252,  63,  1;
  1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
		

Crossrefs

Columns (essentially): A008589 (k=1), A024966 (k=2).

Programs

  • Magma
    A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
    [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
    (* Second program *)
    A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
    Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
  • SageMath
    def A168622(n,k):
        if k==0 or k==n: return 1
        else: return 7*binomial(n,k)
    print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025

Formula

From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)

A220753 Expansion of (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).

Original entry on oeis.org

1, 4, 8, 11, 22, 25, 50, 53, 106, 109, 218, 221, 442, 445, 890, 893, 1786, 1789, 3578, 3581, 7162, 7165, 14330, 14333, 28666, 28669, 57338, 57341, 114682, 114685, 229370, 229373, 458746, 458749, 917498, 917501, 1835002, 1835005, 3670010, 3670013
Offset: 0

Views

Author

Philippe Deléham, Apr 13 2013

Keywords

Crossrefs

Programs

  • Magma
    m:=41; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)))); // Bruno Berselli, Apr 13 2013
  • Mathematica
    Table[7 2^Floor[n/2] - (3/2) (3 + (-1)^n), {n, 0, 40}] (* Bruno Berselli, Apr 13 2013 *)
    LinearRecurrence[{0, 3, 0, -2}, {1, 4, 8, 11}, 40] (* T. D. Noe, Apr 17 2013 *)

Formula

G.f.: (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).
a(2n) = 7*2^n - 6 = A048489(n) = A063757(2n) = A005009(n)-6.
a(2n+1) = 7*2^n - 3 = A048489(n) + 3 = A063757(2n+1) - 3*A000225(n) = A005009(n)-3.
a(n) = a(n-1)*2 if n even.
a(n) = a(n-1)+3 if n odd.
a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=4, a(2)=8, a(3)=11.
a(n) = 7*2^floor(n/2) - (3/2)*(3+(-1)^n).
a(n) = A047290(A083416(n+1)). [Bruno Berselli, Apr 13 2013]
Showing 1-9 of 9 results.