cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003384 Numbers that are the sum of 6 nonzero 8th powers.

Original entry on oeis.org

6, 261, 516, 771, 1026, 1281, 1536, 6566, 6821, 7076, 7331, 7586, 7841, 13126, 13381, 13636, 13891, 14146, 19686, 19941, 20196, 20451, 26246, 26501, 26756, 32806, 33061, 39366, 65541, 65796, 66051, 66306, 66561, 66816, 72101, 72356, 72611, 72866, 73121
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
23063715 is in the sequence as 23063715 = 1^8 + 4^8 + 4^8 + 5^8 + 7^8 + 8^8.
93544421 is in the sequence as 93544421 = 1^8 + 3^8 + 6^8 + 7^8 + 9^8 + 9^8.
120267520 is in the sequence as 120267520 = 4^8 + 4^8 + 6^8 + 6^8 + 8^8 + 10^8. (End)
		

Crossrefs

Cf. A133093.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Formula

Row sums of A133093(n+1). - Gary W. Adamson, Sep 09 2007

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A131110 A000012 * A133084.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 10, 6, 5, 1, 15, 10, 15, 5, 1, 21, 15, 35, 15, 7, 1, 28, 21, 70, 35, 28, 7, 1, 36, 28, 126, 70, 84, 28, 9, 1, 45, 36, 210, 126, 210, 84, 45, 9, 1, 55, 45, 330, 210, 462, 210, 165, 45, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums give A033484.
Duplicate of A133093. - Georg Fischer, Oct 10 2021

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 3, 1;
10, 6, 5, 1;
15, 10, 15, 5, 1;
21, 15, 35, 15, 7, 1;
28, 21, 70, 35, 28, 7, 1;
...
		

Crossrefs

Programs

  • PARI
    T4(n, k) = if(k == n, 1, (1  - (1 + (-1)^k)/2 )*binomial(n, k) + ((1 + (-1)^k)/2)*binomial(n - 1, k - 1)); \\ A133084
    N=10; matrix(N, N, n, k, if(n>=k, 1))*matrix(N, N, n, k, T4(n,k)) \\ Michel Marcus, Oct 11 2021

Formula

A000012 * A133084 as infinite lower triangular matrices.

Extensions

a(46) corrected by Georg Fischer, Oct 10 2021
Showing 1-2 of 2 results.