cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 51 results. Next

A032523 Index of first occurrence of n as a term in A001203, the continued fraction for Pi.

Original entry on oeis.org

4, 9, 1, 30, 40, 32, 2, 44, 130, 100, 276, 55, 28, 13, 3, 78, 647, 137, 140, 180, 214, 83, 203, 91, 791, 112, 574, 175, 243, 147, 878, 455, 531, 421, 1008, 594, 784, 3041, 721, 1872, 754, 119, 492, 429, 81, 3200, 825, 283, 3027, 465, 1437, 3384, 1547, 1864, 446
Offset: 1

Views

Author

Keywords

Comments

Incorrectly indexed version of A225802 (assuming the c.f. is [a_1; a_2, a_3, ...] instead of [a_0; a_1, a_2, ...]).
Until it is proved that every integer n>0 does occur in A001203, we should tacitly understand a convention like "A032523(n) = 0 if n does not occur in A001203". - M. F. Hasler, Mar 31 2008
All positive integers <= 33674 occur in the first 5,821,569,425 terms of the c.f. - Eric W. Weisstein, Sep 19 2011
All positive integers <= 47086 occur in the first 10,672,905,501 terms of the c.f. (the first that do not are 47087, 49004, 50465, 50471, ...) - Eric W. Weisstein, Jul 18 2013

Crossrefs

Cf. A225802 (= a(n) - 1).

Programs

  • Mathematica
    With[{cfp=ContinuedFraction[Pi,5000]},Flatten[Table[Position[cfp,n,1,1],{n,60}]]] (* Harvey P. Dale, Dec 11 2012 *)
  • PARI
    default( realprecision, 15000); v=contfrac(Pi); a(n) = for( i=1,#v, v[i]==n && return(i)) \\ - W. Meeussen, simplified by M. F. Hasler, Mar 31 2008

Formula

a(n) = A225802(n) + 1.
A032523(n) = min { k | A001203(k)=n }. - M. F. Hasler, Mar 31 2008

Extensions

Edited by M. F. Hasler, Mar 31 2008

A138759 Indices for which A001203 (continued fraction for Pi) is prime.

Original entry on oeis.org

1, 2, 9, 11, 14, 17, 18, 19, 20, 23, 27, 28, 31, 36, 37, 39, 40, 46, 48, 49, 50, 52, 59, 65, 70, 71, 72, 73, 75, 85, 86, 90, 93, 95, 97, 101, 102, 105, 106, 109, 110, 111, 118, 120, 122, 123, 124, 127, 128, 131, 132, 133, 140, 142, 145, 146, 151, 152, 153, 155, 159
Offset: 1

Views

Author

M. F. Hasler, Mar 31 2008

Keywords

Examples

			This sequence starts 1,2,9,11,... since the first, 2nd, 9th, 11th...
term of sequence A001203 = (3, 7, 15, 1, 292, 1, 1, 1, 2, ...) are primes.
		

Crossrefs

Programs

  • Mathematica
    Position[ContinuedFraction[Pi,200],?PrimeQ]//Flatten(* _Harvey P. Dale, Aug 07 2019 *)
  • PARI
    default(realprecision,1000); t=contfrac(Pi); for( k=1,#t, isprime(t[k]) & print1(k","))

Formula

k is in A138759 <=> A001203(k) is in A000040

A080406 Boustrophedon transform of the continued fraction of Pi (cf. A001203).

Original entry on oeis.org

3, 10, 32, 73, 457, 1994, 6407, 29489, 148253, 852592, 5420543, 37975111, 290066507, 2400720769, 21396506651, 204322668174, 2081209926313, 22523982873141, 258105780607144, 3121989826825492, 39750408190737416
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Examples

			We simply apply the Boustrophedon transform to [3,7,15,1,292,1,1,1,...]
		

Crossrefs

Formula

a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=136.651536367325329682973604897976758877614262731284965133228708820... - Benoit Cloitre and Mark Hudson (mrmarkhudson(AT)hotmail.com)

A107892 Index of first occurrence of n-th prime in A001203, the continued fraction for Pi.

Original entry on oeis.org

9, 1, 40, 2, 276, 28, 647, 140, 203, 243, 878, 784, 754, 492, 825, 1547, 907, 868, 1789, 9215, 898, 6222, 9131, 4829, 1516, 6700, 22640, 872, 11170, 3204, 223, 10387, 8299, 30086, 31079, 12637, 8486, 20644, 8451, 53069, 32093, 16297, 20276, 1002, 21264
Offset: 1

Views

Author

Zak Seidov, May 25 2005

Keywords

Comments

Until it is proved that every prime does indeed occur in A001203, we should tacitly understand a convention like "A107892(n) = 0 if A000040(n) does not occur in A001203". - M. F. Hasler, Mar 31 2008
Among first 1000000 terms of the continued fraction for Pi, the first absent primes have indices 129, 132, 137, 146, 147, 158, 160, 165, 170, 172, 175, 180, 182, 184, 189, 193, 197, 198, 199. The 200th prime is in the 947040th place, thus A107892(200)=947040.

Crossrefs

Cf. A032523: first occurrence of n in A001203.

Formula

A107892(n) = A032523(A000040(n)) = min { k | A001203(k)=A000040(n) }. - M. F. Hasler, Mar 31 2008

Extensions

Edited by M. F. Hasler, Mar 31 2008

A138758 Index of A001203(n) (continued fraction for Pi) in A000040 (primes), or 0 if A001203(n) is not prime.

Original entry on oeis.org

2, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 2, 6, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 0, 0, 4, 0, 1, 2, 4, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 0, 1
Offset: 1

Views

Author

M. F. Hasler, Mar 31 2008

Keywords

Examples

			This sequence starts 2,4,0,0,... since the 1st and 2nd terms of the continued fraction expansion of Pi, A001203 = (3, 7, 15, 1, ...) are the 2nd resp. 4th primes, while the next two terms are not primes.
		

Crossrefs

Programs

  • PARI
    default(realprecision,1000); t=contfrac(Pi); vector(#t,i,isprime(t[i])*primepi(t[i]))

Formula

a(n) = A000720(A001203(n)) * A010051(A001203(n)).

A007541 Incrementally largest terms in the continued fraction for Pi-2 (cf. A001203).

Original entry on oeis.org

1, 7, 15, 292, 436, 20776, 78629, 179136, 528210, 12996958, 878783625, 5408240597, 5916686112, 9448623833, 9787547328, 52662113289
Offset: 1

Views

Author

Keywords

Comments

No larger term in the first 10,672,905,501 terms of the c.f. - Eric W. Weisstein, Jul 18 2013

References

  • R. W. Gosper, Jr., Table of the simple continued fraction for pi and the derived decimal approximation, Math. Comp., 31 (1977), 1044.
  • R. W. Gosper, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • See A001203 for many additional references and links.

Crossrefs

Apart from initial term, same as A033089.

Programs

  • Mathematica
    upto=10^7;a={};r=0;f=ContinuedFraction[Pi-2,upto];Do[If[f[[i]]>r,AppendTo[a,r=f[[i]]]],{i, upto}];a (* Paolo Xausa, Nov 28 2021 *)
  • PARI
    allocatemem(4096*10^6);
    default(realprecision, 50000);
    v = contfrac(Pi-2);
    m = 0;
    for (i=1, #v, if (v[i] > m, m = v[i]; print1(m, ", "))); \\ Michel Marcus, Aug 05 2017; to get 7 terms

Extensions

Corrected (missing a(9) added) by Eric W. Weisstein, Dec 08 2010
a(12) from Eric W. Weisstein, Dec 08 2010
a(13) from Eric W. Weisstein, Sep 16 2011
a(14) from Eric W. Weisstein, Sep 17 2011
a(15) from Eric W. Weisstein, Jul 18 2013
a(6) corrected by Bobby Jacobs, Aug 05 2017
a(16) = A033089(16) from Jeppe Stig Nielsen, Nov 28 2021

A185591 Primes in continued fraction expansion of Pi (A001203).

Original entry on oeis.org

3, 7, 2, 3, 2, 2, 2, 2, 2, 2, 3, 13, 2, 2, 2, 3, 5, 7, 2, 3, 7, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 7, 3, 3, 7, 2, 7, 2, 3, 19, 2, 3, 7, 3, 3, 3, 2, 2, 2, 13, 2, 3, 3, 3, 2, 5, 3, 2, 2, 3, 23, 3, 7, 2, 2, 2, 127, 5, 3, 13, 7, 5, 3, 29, 3, 2, 2, 3, 3, 3, 3, 2, 7, 2, 11, 3, 7, 5, 2, 3, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Jani Melik, Feb 04 2011

Keywords

Crossrefs

Cf. A185809.

Programs

  • Maple
    Digits := 600: p1 := convert(Pi,confrac,300): select(isprime, p1);
  • Mathematica
    Select[ContinuedFraction[Pi,500],PrimeQ] (* Harvey P. Dale, Jan 22 2012 *)

A185809 Composite numbers in continued fraction expansion of Pi (A001203).

Original entry on oeis.org

15, 292, 14, 84, 15, 4, 6, 6, 99, 6, 6, 8, 12, 8, 6, 4, 4, 16, 161, 45, 22, 4, 24, 10, 4, 8, 26, 4, 8, 42, 4, 9, 57, 18, 9, 18, 30, 8, 15, 4, 12, 28, 10, 20, 4, 6, 4, 120, 15, 16, 21, 9, 6, 4, 14, 9, 4, 10, 12, 4, 4, 48, 16, 4, 4, 20, 4, 436, 8, 6, 4, 4, 6, 9, 15, 24, 4, 4, 4, 6, 4, 58, 15, 4, 8, 4, 9, 4, 15, 24, 4, 10, 12, 21, 34, 4, 15, 4, 44, 4, 20776, 94, 55, 32, 14, 50, 16, 4, 6, 28, 4, 4
Offset: 1

Views

Author

Jani Melik, Feb 04 2011

Keywords

Crossrefs

Cf. A185591.

Programs

  • Maple
    ts_composite := proc(n)
    `if`(isprime(n) or n=1, true, false);
    end proc:
    Digits := 1000: p1 := convert(Pi,confrac,500): remove(ts_composite, p1);
  • Mathematica
    Select[ContinuedFraction[\[Pi],500],#!=1&&!PrimeQ[#]&] (* Harvey P. Dale, May 02 2011 *)

A080407 Decimal expansion of the number which results when the Boustrophedon transform of the continued fraction of Pi (A080406, A001203) is interpreted as a continued fraction.

Original entry on oeis.org

3, 0, 9, 9, 6, 8, 8, 6, 0, 6, 4, 0, 3, 0, 4, 8, 3, 4, 2, 5, 2, 6, 7, 2, 8, 8, 9, 1, 7, 2, 2, 0, 8, 8, 6, 6, 4, 1, 2, 8, 8, 7, 9, 7, 6, 0, 2, 5, 3, 0, 5, 4, 8, 8, 8, 1, 8, 5, 1, 2, 3, 5, 1, 3, 8, 9, 8, 0, 1, 1, 6, 5, 9, 4, 9, 4, 9, 5, 3, 4, 9, 3, 5, 1, 8, 0, 7, 4, 7, 2, 6, 1, 2, 2, 4, 4, 1, 1, 6, 6
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Examples

			3.0996886064030483425267288917220886641288...
		

Crossrefs

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A059101 Number of terms of the fractional part of A001203 for which the geometric mean produces increasingly better approximations to Khinchin's constant.

Original entry on oeis.org

1, 3, 7, 8, 9, 10, 11, 15, 16, 17, 97, 100, 103, 117, 976, 32307, 32760, 32787, 60508, 60601, 60663, 187154, 230084, 1120375, 1146529, 2211732, 4497058, 1434927965, 1434935064, 1434935232, 1434935281, 1471575921, 1471636101, 1490844937, 1491643951, 1498931686
Offset: 1

Views

Author

Hans Havermann, Feb 13 2001

Keywords

Comments

Next term > 3*10^10. - Hans Havermann, Jul 29 2024
The geometric mean of 1498931686 terms is Khinchin + 1.00240496*10^-13.

Examples

			The geometric mean of 17 terms (Khinchin + 0.00752006) is not bettered until we calculate the geometric mean of 97 terms (Khinchin - 0.00326655).
		

Crossrefs

Formula

p = Rest[{A001203}]; q = N[1, 100]; r = p[[1]] + 1; t = {}; Do[q = q*p[[i]]; g = q^(1/i) - Khinchin; If[Abs[g] < r, r = Abs[g]; t = Append[t, i]], {i, 1, Length[p]}]; t

Extensions

a(28)-a(36) from Hans Havermann, Dec 27 2012
Showing 1-10 of 51 results. Next