cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A054936 Duplicate of A006443.

Original entry on oeis.org

2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, 1626998, 8067786, 40580084, 206734083, 1064666724, 5536480877, 29036188788
Offset: 1

Views

Author

Keywords

A006385 Number of unsensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A277741.
Column k=0 of A379439.
Cf. A000168 (rooted), A006384 (sensed), A006443 (achiral), A006403 (2-connected), A090376.
Cf. A006387 (genus 1), A214814 (genus 2), A214815 (genus 3), A214816.

Formula

a(n) = (A006384(n) + A006443(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(18)-a(19) added by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A006384 Number of sensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A379430.
Cf. A000168 (rooted), A006385 (unsensed), A006443 (achiral), A006402 (2-connected).

Programs

  • Maple
    with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
  • Mathematica
    a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)

Formula

For n>0, a(n) = (1/2n)[A'(n)+sum_{kA000010, q(n)=(n+3) A'(n-1/2)/4 if n is odd and q(n) = (n-1)A'(n-2/2)/4 if n is even, where A'(n)=A000168(n), the number of rooted maps. - Valery A. Liskovets, May 27 2006
Equivalently, a(n) = (1/2n)[2*3^n/((n+1)(n+2))*binomial(2n,n) +sum_{kValery A. Liskovets, May 27 2006
a(n) ~ 12^n / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Alois P. Heinz, Apr 24 2009

A380234 Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 47, 34, 4, 184, 188, 46, 761, 1040, 408, 33, 3314, 5756, 3220, 538, 14997, 32069, 23824, 6489, 398, 69886, 179408, 169336, 66150, 8506, 333884, 1009234, 1170654, 611278, 129030, 6405, 1626998, 5700548, 7930892, 5279172, 1608172, 168702, 8067786, 32341002, 52930196, 43429578, 17758601, 3080190, 128448
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2025

Keywords

Comments

Achiral maps are also called reflexible.

Examples

			Triangle starts:
  n\k    [0]     [1]     [2]    [3]   [4]
  [0]     1;
  [1]     2;
  [2]     4,      1;
  [3]    14,      6;
  [4]    47,     34,      4;
  [5]   184,    188,     46;
  [6]   761,   1040,    408,    33;
  [7]  3314,   5756,   3220,   538;
  [8] 14997,  32069,  23824,  6489,  398;
  [9] 69886, 179408, 169336, 66150, 8506;
  ...
		

Crossrefs

Row sums are A170947.
Column 0 is A006443.
Cf. A379438 (sensed), A379439 (unsensed).

A379431 Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 12, 17, 12, 3, 6, 28, 58, 58, 28, 6, 10, 68, 179, 247, 179, 68, 10, 20, 157, 538, 942, 942, 538, 157, 20, 35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35, 70, 845, 4288, 11424, 18316, 18316, 11424, 4288, 845, 70
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			==================================================
n\k |  1   2    3     4     5     6     7    8 ...
----+---------------------------------------------
  1 |  1   1    1     2     3     6    10   20 ...
  2 |  1   2    5    12    28    68   157  372 ...
  3 |  1   5   17    58   179   538  1531 4288 ...
  4 |  2  12   58   247   942  3388 11424 ...
  5 |  3  28  179   942  4345 18316 ...
  6 |  6  68  538  3388 18316 ...
  7 | 10 157 1531 11424 ...
  8 | 20 372 4288 ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,   1;
   1,   2,    1;
   2,   5,    5,   2;
   3,  12,   17,   12,    3;
   6,  28,   58,   58,   28,    6;
  10,  68,  179,  247,  179,   68,   10;
  20, 157,  538,  942,  942,  538,  157,  20;
  35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35;
  ...
		

Crossrefs

Antidiagonal sums are A006443.
Column 1 is A210736(n-1).
Cf. A269920 (rooted), A277741 (unsensed), A379430 (sensed).

Formula

A(n,k) = A(k,n).

A006444 Number of achiral 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Cf. A006402 (sensed), A006403 (unsensed), A006443 (connected), A006445 (3-connected).

A054937 Number of chiral pairs of planar maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 5, 64, 655, 5858, 51369, 448982, 3967466, 35603366, 324990677, 3016738988, 28449849867, 272233685444, 2639649712580, 25902435997188
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Formula

a(n) = A006385(n) - A006443(n). - R. J. Mathar, Oct 01 2011

Extensions

a(0)=0 prepended by Andrew Howroyd, Jan 13 2025
Showing 1-7 of 7 results.