Original entry on oeis.org
2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, 1626998, 8067786, 40580084, 206734083, 1064666724, 5536480877, 29036188788
Offset: 1
A006385
Number of unsensed planar maps with n edges.
Original entry on oeis.org
1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
- Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.
- Valery. A. Liskovets, A reductive technique for enumerating nonisomorphic planar maps, Discr. Math., v.156 (1996), 197-217.
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
- Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
A006384
Number of sensed planar maps with n edges.
Original entry on oeis.org
1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0
- V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Valery A. Liskovets, Enumerative formulas for unrooted planar maps: a pattern, Electron. J. Combin., 11:1 (2004), R88.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087) - From _N. J. A. Sloane_, Jun 03 2012
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- N. J. A. Sloane, Notes
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
- T. R. S. Walsh, Data (Preprint 1, Part 1)
- T. R. S. Walsh, Data (Preprint 1, Part 2)
- T. R. S. Walsh, Data (Preprint 1, Part 3)
- T. R. S. Walsh, Notes
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
- T. R. S. Walsh & N. J. A. Sloane, Correspondence, 1991
- Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
- Nicholas C. Wormald, On the number of planar maps, Can. J. Math. 33.1 (1981), 1-11. (Annotated scanned copy)
-
with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
-
a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)
A380234
Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 2, 4, 1, 14, 6, 47, 34, 4, 184, 188, 46, 761, 1040, 408, 33, 3314, 5756, 3220, 538, 14997, 32069, 23824, 6489, 398, 69886, 179408, 169336, 66150, 8506, 333884, 1009234, 1170654, 611278, 129030, 6405, 1626998, 5700548, 7930892, 5279172, 1608172, 168702, 8067786, 32341002, 52930196, 43429578, 17758601, 3080190, 128448
Offset: 0
Triangle starts:
n\k [0] [1] [2] [3] [4]
[0] 1;
[1] 2;
[2] 4, 1;
[3] 14, 6;
[4] 47, 34, 4;
[5] 184, 188, 46;
[6] 761, 1040, 408, 33;
[7] 3314, 5756, 3220, 538;
[8] 14997, 32069, 23824, 6489, 398;
[9] 69886, 179408, 169336, 66150, 8506;
...
A379431
Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 12, 17, 12, 3, 6, 28, 58, 58, 28, 6, 10, 68, 179, 247, 179, 68, 10, 20, 157, 538, 942, 942, 538, 157, 20, 35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35, 70, 845, 4288, 11424, 18316, 18316, 11424, 4288, 845, 70
Offset: 1
==================================================
n\k | 1 2 3 4 5 6 7 8 ...
----+---------------------------------------------
1 | 1 1 1 2 3 6 10 20 ...
2 | 1 2 5 12 28 68 157 372 ...
3 | 1 5 17 58 179 538 1531 4288 ...
4 | 2 12 58 247 942 3388 11424 ...
5 | 3 28 179 942 4345 18316 ...
6 | 6 68 538 3388 18316 ...
7 | 10 157 1531 11424 ...
8 | 20 372 4288 ...
...
As a triangle, rows give the number of edges (first row is 0 edges):
1;
1, 1;
1, 2, 1;
2, 5, 5, 2;
3, 12, 17, 12, 3;
6, 28, 58, 58, 28, 6;
10, 68, 179, 247, 179, 68, 10;
20, 157, 538, 942, 942, 538, 157, 20;
35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35;
...
A006444
Number of achiral 2-connected planar maps with n edges.
Original entry on oeis.org
0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
A054937
Number of chiral pairs of planar maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 5, 64, 655, 5858, 51369, 448982, 3967466, 35603366, 324990677, 3016738988, 28449849867, 272233685444, 2639649712580, 25902435997188
Offset: 0
Showing 1-7 of 7 results.
Comments