cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A214816 Number of unsensed combinatorial maps with n edges on an orientable surface of any genus.

Original entry on oeis.org

1, 2, 5, 20, 96, 644, 5839, 67834, 970568, 16256556, 308620966, 6506035400, 150358570914, 3775903806928, 102348067516576, 2977979542305736, 92579723269733557, 3062602106878957610, 107418879166917701583, 3981908920500346885116, 155550644128029095714786
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Row sums of A379439.
Cf. A006385, A006387, A170946 (sensed), A170947 (achiral), A170948 (chiral pairs), A214814, A214815, A297880, A297881, A348798, A348800, A348801.

Formula

a(n) = (A170946(n) + A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.7] - Andrey Zabolotskiy, Jun 06 2024

Extensions

a(12)-a(18) from Andrey Zabolotskiy, Jun 06 2024
a(19) onwards from Andrew Howroyd, Jan 27 2025

A170946 Number of sensed unrooted combinatorial maps with n edges.

Original entry on oeis.org

1, 2, 5, 20, 107, 870, 9436, 122840, 1863359, 32019826, 613981447, 12989756316, 300559406027, 7550660328494, 204687564072918, 5955893472990664, 185158932576089787, 6125200100394894738, 214837724735760642773, 7963817561236130021156, 311101285883236139915989
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Comments

Also number of "dessins d'enfants" with n edges. - Mark van Hoeij, Jan 23 2011
a(n) also counts the Feynman diagrams of the QED vacuum polarization with 2*n vertices: fermion lines (resp. boson lines, vertices) of the Feynman diagrams correspond to the vertices (resp. edges, darts) of the combinatorial maps, and the circular order of the edges around each vertex in a map is encoded in the topology of the corresponding Feynman diagram. - Andrey Zabolotskiy, Jan 28 2025

Crossrefs

Row sums of A379438 and A380615.
Cf. A170947 (achiral), A214816 (unsensed).
Cf. A268558 (inv. Euler Transf.)

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 28 2025

A380234 Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 47, 34, 4, 184, 188, 46, 761, 1040, 408, 33, 3314, 5756, 3220, 538, 14997, 32069, 23824, 6489, 398, 69886, 179408, 169336, 66150, 8506, 333884, 1009234, 1170654, 611278, 129030, 6405, 1626998, 5700548, 7930892, 5279172, 1608172, 168702, 8067786, 32341002, 52930196, 43429578, 17758601, 3080190, 128448
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2025

Keywords

Comments

Achiral maps are also called reflexible.

Examples

			Triangle starts:
  n\k    [0]     [1]     [2]    [3]   [4]
  [0]     1;
  [1]     2;
  [2]     4,      1;
  [3]    14,      6;
  [4]    47,     34,      4;
  [5]   184,    188,     46;
  [6]   761,   1040,    408,    33;
  [7]  3314,   5756,   3220,   538;
  [8] 14997,  32069,  23824,  6489,  398;
  [9] 69886, 179408, 169336, 66150, 8506;
  ...
		

Crossrefs

Row sums are A170947.
Column 0 is A006443.
Cf. A379438 (sensed), A379439 (unsensed).

A170948 Number of chiral pairs of combinatorial maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 11, 226, 3597, 55006, 892791, 15763270, 305360481, 6483720916, 150200835113, 3774756521566, 102339496556342, 2977913930684928, 92579209306356230, 3062597993515937128, 107418845568842941190, 3981908640735783136040, 155550641755207044201203
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Crossrefs

Cf. A170946 (sensed), A170947 (achiral), A214816 (unsensed).

Formula

a(n) = (A170946(n) - A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.8] - Andrey Zabolotskiy, Jun 06 2024

Extensions

Name clarified, a(0)=0 prepended and a(19) onwards added by Andrew Howroyd, Jan 27 2025

A380617 Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 16, 28, 26, 12, 3, 53, 121, 128, 82, 28, 6, 206, 528, 686, 505, 239, 68, 10, 817, 2516, 3638, 3192, 1802, 686, 157, 20, 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35, 16361, 63643, 114669, 126876, 95422, 50954, 19346, 5100, 845, 70
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of achiral combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |    1      2      3      4      5     6     7    8   9
----+-------------------------------------------------------
  0 |    1;
  1 |    1,     1;
  2 |    2,     2,     1;
  3 |    5,     8,     5,     2;
  4 |   16,    28,    26,    12,     3;
  5 |   53,   121,   128,    82,    28,    6;
  6 |  206,   528,   686,   505,   239,   68,   10;
  7 |  817,  2516,  3638,  3192,  1802,  686,  157,  20;
  8 | 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35;
  ...
		

Crossrefs

Row sums are A170947.
Main diagonal is A001405(n-1).
Column 1 is A018191.
Cf. A379431 (planar), A380615 (sensed), A380616 (unsensed).
Showing 1-5 of 5 results.