cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A384963 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 7, 5, 2, 1, 6, 22, 42, 49, 35, 18, 5, 2, 12, 76, 237, 442, 510, 412, 218, 84, 18, 5, 27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14, 65, 1001, 6757, 25842, 63254, 106985, 129782, 115988, 76582, 37421, 13111, 3228, 489, 50
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1;
   2,   2,    1,    1,
   3,   7,    7,    5,    2,    1;
   6,  22,   42,   49,   35,   18,    5,    2;
  12,  76,  237,  442,  510,  412,  218,   84,   18,   5;
  27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14;
  ...
		

Crossrefs

Row sums are A372892.
Antidiagonal sums are A006395.
Columns 1..2 are A006082, A384967.
Cf. A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384850 (version by number of edges then vertices), A384964 (sensed version).

A384966 Number of sensed simple planar maps with n vertices and 2 faces.

Original entry on oeis.org

0, 0, 1, 2, 8, 29, 113, 444, 1763, 6951, 27395, 107672, 422330, 1654180, 6472518, 25308760, 98923442, 386589398, 1510737079, 5904291401, 23079308104, 90236258057, 352908128341, 1380632536468, 5403055984114, 21152009997924, 82835786189975, 324518950873991, 1271797441923614, 4985982054721119
Offset: 1

Views

Author

Andrew Howroyd, Jun 14 2025

Keywords

Comments

In other words, a(n) is the number of embeddings on the sphere of connected simple unicyclic planar graphs with n nodes up to orientation preserving isomorphisms.

Crossrefs

Column 2 of A384964.
Cf. A001429, A006078 (cycle is loop), A007595 (cycle is digon), A380237 (not necessarily simple), A384967 (unsensed version)..

Programs

  • PARI
    seq(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); Vec(1/(1 - x*c(2)) - x*(c(1)^2 + c(2)) - x^2*(c(1)^4 + 3*c(2)^2)/2 - 1 - sum(k=1, n, log(2 - c(k))*eulerphi(k)/k), -n)/2}

Formula

a(n) = A380237(n) - A007595(n) - A006078(n).

A384965 Number of sensed simple planar maps with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 28, 253, 3461, 58963, 1139866, 23952568, 534729502, 12511055327, 303919972592, 7613826460120
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges.

Crossrefs

Row sums of A384964.
Cf. A006394 (with n edges), A372892 (unsensed version).
Showing 1-4 of 4 results.