A199743 Rounded near-integers (exp(Pi*sqrt(h)) - 744)^(1/3) where h is A003173(n+3) (Heegner numbers of the form 4p-1 where p is prime).
15, 32, 96, 960, 5280, 640320
Offset: 1
Examples
a(1) = 15 because 15^3 + 744 ~ exp(Pi*sqrt(7)). a(2) = 32 because 32^3 + 744 ~ exp(Pi*sqrt(11)). a(3) = 96 because 96^3 + 744 ~ exp(Pi*sqrt(19)). a(4) = 960 because 960^3 + 744 ~ exp(Pi*sqrt(43)). a(5) = 5280 because 5280^3 + 744 ~ exp(Pi*sqrt(67)). a(6) = 640320 because 640320^3 + 744 ~ exp(Pi*sqrt(163)).
Formula
a(n) = (-j((1 + i*sqrt(h(n))) / 2))^(1/3) where h(n) = A003173(n+3) and j(x) is the j-invariant. - Andrey Zabolotskiy, Sep 30 2021
Comments