cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marco Frigerio

Marco Frigerio's wiki page.

Marco Frigerio has authored 5 sequences.

A340133 The sequence lists the least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequences A000926 (Idoneal numbers) and A003173 (Heegner numbers). See example.

Original entry on oeis.org

3230498881, 5086789009, 6956459689, 7260636769, 12387462649, 13125124321, 14049841129, 14247509329, 14310889849, 15871864849, 16573389361, 17502040609, 17768627809, 22042168201, 22621870441, 22957650769, 23018043409, 23819076121, 25228204849, 26585136601
Offset: 1

Author

Marco Frigerio, Dec 29 2020

Keywords

Comments

First number in this sequence is equal to least common number of sequences A340055 and A340132.
The sequence is obtained using Lista(m), with m=266*10^8, see section PROG. It's possible increase m to discover more terms of the sequence. It's also possible to extend the sequences A340055 and A340132 to check their common numbers.

Examples

			3230498881 = 2465^2+A000926(1)*56784^2
           = 56609^2+A000926(2)*3600^2
           = 35927^2+A000926(3)*25428^2
           = ...
           = 56791^2+A003173(9)*180^2
           = ...
           = 35743^2+A000926(65)*1028^2
		

Crossrefs

Programs

  • PARI
    Union()={ my (v);v=(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));for(k=3, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d)));return(v);}
    isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
    Primo(p, m)={my(u=Union()); while(pr,v=concat(v,q),q=m)); return(v);}

A340132 Least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequence A000926 (idoneal numbers).

Original entry on oeis.org

1083289, 3818929, 6104641, 6868801, 7623529, 8465209, 9033649, 10105489, 11400481, 11597569, 11809561, 12338041, 12348961, 13154761, 13426009, 15861169, 16889161, 16922161, 18596449, 19684729, 20322481, 21067201, 21480001, 22684561, 23654569, 24531049
Offset: 1

Author

Marco Frigerio, Dec 29 2020

Keywords

Comments

First number in this sequence is equal to last number of sequence A338088.
The sequence is obtained using Lista(m), with m=246*10^5, see section PROG. It's possible to increase m to discover more terms of the sequence.

Examples

			1083289 =  315^2  + A000926(1)*992^2
        = 1033^2  + A000926(2)*90^2
        =  979^2  + A000926(3)*204^2
        = ...
        =  817^2  + A000926(65)*15^2.
		

Crossrefs

Programs

  • PARI
    Idoneal()={return(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));}
    isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
    Primo(p, m)={my(u=Idoneal()); while(pr,v=concat(v,q),q=m)); return(v);}

A340055 Primes that can be written in the form j^2 + h*k^2, where j and k are positive integers, for every h in A003173 (Heegner numbers).

Original entry on oeis.org

2333017, 5995081, 11414209, 11941273, 12953593, 14823769, 18550849, 19231969, 23582161, 26603977, 27336457, 29236729, 32630161, 35452033, 35836249, 37895089, 40411177, 42911257, 46007329, 46087057, 49680577, 49825609, 52046593, 52208017, 55624297, 63257401
Offset: 1

Author

Marco Frigerio, Dec 29 2020

Keywords

Comments

The first term in this sequence is equal to last term in A338087.
The sequence is obtained using Lista(m), with m=633*10^5, see section PROG. One can increase m to obtain further terms of the sequence.

Examples

			2333017 =  989^2 + A003173(1)*1164^2
        = 1493^2 + A003173(2)*228^2
        = 1093^2 + A003173(3)*616^2
        =  685^2 + A003173(4)*516^2
        = 1349^2 + A003173(5)*216^2
        =  179^2 + A003173(6)*348^2
        = 1293^2 + A003173(7)*124^2
        = 1395^2 + A003173(8)*76^2
        = 1485^2 + A003173(9)*28^2.
		

Crossrefs

Programs

  • PARI
    Heegner()={my (d, k, v);  v=vector(3, i, i); for(k=2, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d))); return(v);}
    isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
    Primo(p, m)={my(u=Heegner()); while(pr,v=concat(v,q),q=m)); return(v);}

A338087 a(n) is the smallest prime number which can be represented as x^2 + h*y^2 with x > 0 and y > 0 for each h in the first n Heegner numbers (A003173).

Original entry on oeis.org

2, 17, 73, 193, 1873, 20353, 20353, 79633, 2333017
Offset: 1

Author

Marco Frigerio, Oct 09 2020

Keywords

Comments

The sequence lists prime numbers, in nondecreasing order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes an increasing number of values of the sequence A003173 (Heegner numbers). See examples.

Examples

			a(1) = 2 because, for A003173(1) = 1, 2 = 1^2+A003173(1)*1^2.
a(2) = 17 because, considered the first two Heegner numbers, A003173(1) = 1 and A003173(2) = 2, 17 = 1^2+A003173(1)*4^2 = 3^2+A003173(2)*2^2.
The prime 20353 is present in the sequence 2 times because:
a(6) = 63^2+A003173(1)*128^2 = 79^2+A003173(2)*84^2 = 55^2+A003173(3)*76^2 = 65^2+A003173(4)*48^2 = 137^2+A003173(5)*12^2 = 97^2+A003173(6)*24^2, with Heegner numbers up to A003173(6)=19, and also:
a(7) = 119^2+A003173(7)*12^2, with Heegner number A003173(7)=43.
2333017 is the last term of the sequence since for every Heegner number h there are x, y such that 2333017 = x^2 + h*y^2 and this is the least prime for which this is possible.
For n=9, h in A003173 = {1,2,3,7,11,19,43,67,163},
   a(9) = 2333017
          = 989^2  +A003173(1)*1164^2
          = 1493^2 +A003173(2)*228^2
          = 1093^2 +A003173(3)*616^2
          = 685^2  +A003173(4)*516^2
          = 1349^2 +A003173(5)*216^2
          = 179^2  +A003173(6)*348^2
          = 1293^2 +A003173(7)*124^2
          = 1395^2 +A003173(8)*76^2
          = 1485^2 +A003173(9)*28^2.
		

Crossrefs

Cf. A003173.

Programs

  • PARI
    isok(p,u)={for(i=1, #u, my(s=qfbsolve(Qfb(1,0,u[i]),p)); if(s==0 || s[1]==0, return(0))); 1}
    a(n)={my(u=[1, 2, 3, 7, 11, 19, 43, 67, 163][1..n]); forprime(p=2, oo, if(isok(p,u), return(p)))}
    vector(9, n, a(n)) \\ Andrew Howroyd, Nov 05 2020

A338088 Smallest prime numbers which can be represented as x^2 + h*y^2 with x > 0 for every h in the first n idoneal numbers.

Original entry on oeis.org

2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 1009, 2521, 2521, 2521, 2521, 2521, 8089, 8089, 8089, 8089, 8089, 8089, 19009, 19009, 19009, 19009, 19009, 19009, 53881, 53881, 53881, 53881, 53881, 53881, 53881, 605641, 605641, 605641, 605641, 605641, 605641
Offset: 1

Author

Marco Frigerio, Oct 09 2020

Keywords

Comments

The sequence lists prime numbers, in nondecreasing order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes an increasing number of values of the sequence A000926 (idoneal numbers). See examples.

Examples

			a(1) = 2 because, for A000926(1) = 1, 2 = 1^2+A000926(1)*1^2.
a(2) = 17 because, considered the first two idoneal numbers, A000926(1) = 1 and A000926(2) = 2, 17 = 1^2+A000926(1)*4^2 = 3^2+A000926(2)*2^2.
The prime 1009 is present in the sequence 5 times because:
a(7) = 15^2+1*28^2 = 19^2+2*18^2 = 31^2+3*4^2 = 15^2+4*14^2 = 17^2+5*12^2 = 25^2+6*12^2 = 1^2+7*12^2, with idoneal numbers up to A000926(7), and also:
a(8) = 19^2+8*9^2,
a(9) = 28^2+9*5^2,
a(10) = 3^2+10*10^2,
a(11) = 31^2+12*2^2,
with idoneal numbers from  A000926(8) to A000926(11).
1083289 is the last term of the sequence since for every idoneal number h there are x, y such that 1083289 = x^2 + h*y^2 and this is the least prime for which this is possible.
		

Crossrefs

Cf. A000926.

Programs

  • PARI
    isok(p,u)={for(i=1, #u, my(s=qfbsolve(Qfb(1,0,u[i]),p)); if(s==0 || s[1]==0, return(0))); 1}
    idoneal()={select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848])}
    seq()={my(u=idoneal(), v=[1], L=List()); forprime(p=2, oo, if(isok(p,v), listput(L,p); my(k=#v); while(k<#u && isok(p,[u[k+1]]), listput(L,p); k++); if(k==#u, return(Vec(L))); v=u[1..k+1]))}  \\ Andrew Howroyd, Nov 05 2020