A060295 Decimal expansion of exp(Pi*sqrt(163)).
2, 6, 2, 5, 3, 7, 4, 1, 2, 6, 4, 0, 7, 6, 8, 7, 4, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 5, 0, 0, 7, 2, 5, 9, 7, 1, 9, 8, 1, 8, 5, 6, 8, 8, 8, 7, 9, 3, 5, 3, 8, 5, 6, 3, 3, 7, 3, 3, 6, 9, 9, 0, 8, 6, 2, 7, 0, 7, 5, 3, 7, 4, 1, 0, 3, 7, 8, 2, 1, 0, 6, 4, 7, 9, 1, 0, 1, 1, 8, 6, 0, 7, 3, 1, 2, 9, 5, 1, 1, 8, 1
Offset: 18
Examples
The Ramanujan number = 262537412640768743.99999999999925007259719818568887935...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 225-226.
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, p. 106.
- Harold M. Stark, An Introduction to Number Theory, Markham, Chicago, 1970, p. 179.
- Dimitris Vathis, Letter to N. J. A. Sloane, Apr 22 1985.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 142.
Links
- Harry J. Smith, Table of n, a(n) for n = 18..20000
- Jens Blanck, Exact real arithmetic systems: results of competition, pp. 389-393 of J. Blanck et al., eds., Computability and Complexity in Analysis (CCA 2000), Lect. Notes Computer Science 2064/2001.
- Richard E. Borcherds, MegaFavNumbers 262537412680768000, video (2020).
- R. F. Churchhouse and S. T. E. Muir, Continued fractions, algebraic numbers and modular invariants, IMA Journal of Applied Mathematics, Vol. 5, No. 3 (1969), pp. 318-328; CiteSeerX.
- Alex Clark and Brady Haran, 163 and Ramanujan Constant, Numberphile video (2012).
- Philip J. Davis, Are there coincidences in mathematics?, The American Mathematical Monthly, Vol. 88, No. 5 (1981), pp. 311-320.
- Martin Gardner, Six Sensational Discoveries That Somehow or Another Have Escaped Public Attention, Mathematical Games, Scientific American, Vol. 232, No. 4 (1975), pp. 126-133.
- David Barry Gauld, Problem 12 revisited, New Zealand Mathematical Society Newsletter 32 (December 1984), p. 17.
- I. J. Good, What is the Most Amazing Approximate Integer in the Universe?, Pi Mu Epsilon Journal, Vol. 5, No. 7 (1972),pp. 314-315; entire issue.
- Charles Hermite, Sur la théorie des équations modulaires et la résolution de l'équation du cinquième degré, Paris: Mallet-Bachelier, 1859, see p. 48.
- D. H. Lehmer, Table to many places of decimals, Queries-Replies, Math. Comp., Vol. 1, No. 1 (1943), pp. 30-31.
- Tito Piezas III The Ramanujan pages, see section 05.
- Simon Plouffe, exp(pi*sqrt(163)) to 5000 digits.
- Simon Plouffe, exp(Pi*sqrt(163)), the Ramanujan number, to a precision of 2000 digits. [Broken link]
- C. Radoux, A Formula of Ramanujan (Text in French).
- C. Radoux, A Formula of Ramanujan (Continued) (Text in French).
- Eric Weisstein's World of Mathematics, Ramanujan Constant.
- Index entries for transcendental numbers.
Programs
-
Magma
R:= RealField(); Exp(Pi(R)*Sqrt(163)); // G. C. Greubel, Feb 15 2018
-
Mathematica
RealDigits[N[E^(Pi*Sqrt[163]), 110]][[1]]
-
PARI
default(realprecision, 20080); x=exp(Pi*sqrt(163))/10^17; for (n=18, 20000, d=floor(x); x=(x-d)*10; write("b060295.txt", n, " ", d)); \\ Harry J. Smith, Jul 03 2009
Formula
exp(Pi*sqrt(163)) = A199743(6)^3 + 744 - 7.4992... * 10^-13. - Charles R Greathouse IV, Jul 15 2020
Comments