cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A166532 Decimal expansion of A060295^6.

Original entry on oeis.org

3, 2, 7, 4, 5, 1, 6, 6, 6, 6, 3, 9, 0, 7, 9, 2, 0, 0, 5, 0, 3, 2, 9, 2, 5, 3, 5, 8, 6, 6, 5, 4, 1, 2, 5, 0, 2, 6, 5, 2, 4, 8, 7, 8, 8, 2, 7, 4, 6, 9, 1, 5, 2, 6, 8, 2, 5, 9, 7, 1, 1, 5, 6, 7, 4, 7, 7, 3, 1, 8, 5, 6, 1, 0, 0, 9, 7, 1, 2, 5, 5, 4, 8, 0, 4, 6, 8, 8, 3, 6, 9, 6, 3, 0, 6, 4, 2, 8, 3, 7, 7, 5, 0, 7, 2
Offset: 105

Views

Author

Mark A. Thomas, Oct 16 2009

Keywords

Comments

A large near-integer obtained by taking the Ramanujan constant e^(Pi*sqrt(163)) to the sixth power. The constants for even higher powers are in general no longer near integers.

Examples

			327451666639079200503292535866541250265248788274691526825971156\
747731856100971255480468836963064283775072.000097175254162592084120177\
65659310106524359922985819691442056333282681...
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, 3., corr. print., Springer-Verlag Berlin Heidelberg New York, 1996 pp. 383.

Crossrefs

Programs

Formula

Equals exp(6*Pi*sqrt(163)) = A166528^3 = A166529^2.

Extensions

Formula edited and connected to other powers by R. J. Mathar, Feb 27 2010
Minor edits by Vaclav Kotesovec, Jul 04 2014

A166528 Decimal expansion of A060295^2.

Original entry on oeis.org

6, 8, 9, 2, 5, 8, 9, 3, 0, 3, 6, 1, 0, 9, 2, 7, 9, 8, 9, 1, 0, 8, 5, 6, 3, 9, 2, 8, 6, 9, 4, 3, 7, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 3, 7, 3, 8, 6, 4, 4, 2, 0, 9, 2, 3, 4, 6, 0, 7, 5, 7, 2, 3, 2, 9, 0, 6, 2, 5, 7, 0, 8, 9, 9, 9, 9, 4, 0, 8, 3, 0, 3, 2, 6, 2, 2, 8, 4, 4, 2, 9, 9, 0, 2, 5, 1, 4, 8, 6, 0, 6, 0
Offset: 35

Views

Author

Mark A. Thomas, Oct 16 2009

Keywords

Comments

Near-integer obtained by squaring Ramanujan's constant e^(Pi*sqrt(163)).

Examples

			exp(Pi*sqrt(163))^2 = 68925893036109279891085639286943768.00000000016373864420923460757232906257...
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag Berlin Heidelberg New-York, 1996 pp. 383.

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, Oct 18 2009
Example corrected by Harvey P. Dale, May 21 2013

A166529 Decimal expansion of A060295^3.

Original entry on oeis.org

1, 8, 0, 9, 5, 6, 2, 5, 6, 2, 1, 6, 5, 4, 5, 1, 0, 8, 0, 1, 6, 1, 5, 3, 5, 5, 5, 3, 1, 2, 6, 3, 4, 5, 4, 7, 0, 6, 6, 3, 0, 0, 6, 4, 7, 7, 1, 0, 7, 4, 9, 7, 5, 9, 9, 9, 9, 9, 9, 9, 9, 0, 1, 2, 3, 6, 9, 3, 6, 7, 1, 2, 4, 1, 3, 2, 7, 6, 5, 2, 2, 4, 7, 2, 4, 1, 9, 7, 9, 0, 8, 9, 7, 3, 0, 8, 4, 9, 4, 4, 7, 1, 8, 5, 6
Offset: 53

Views

Author

Mark A. Thomas, Oct 16 2009

Keywords

Comments

Near-integer obtained by cubing Ramanujan's constant e^(Pi*sqrt(163)).

Examples

			exp(3*Pi*sqrt(163)) =
18095625621654510801615355531263454706630064771074975 +
0.99999999012369367124132765224724197908973084944718563892074288285...
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, 3., corr. print., Springer-Verlag Berlin Heidelberg New York, 1996 p. 383.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Pi Sqrt[163]]^3,10,120][[1]] (* Harvey P. Dale, Jun 25 2022 *)

Extensions

Edited by N. J. A. Sloane, Oct 17 2009
Previous Mathematica program replaced by Harvey P. Dale, Jun 25 2022

A166530 Decimal expansion of exp(4*Pi*sqrt(163)) (or A060295^4).

Original entry on oeis.org

4, 7, 5, 0, 7, 7, 8, 7, 3, 0, 8, 2, 5, 1, 7, 7, 7, 2, 5, 4, 6, 3, 9, 2, 0, 9, 4, 8, 9, 0, 9, 7, 2, 6, 6, 1, 8, 2, 1, 4, 4, 9, 1, 7, 1, 8, 0, 3, 9, 4, 7, 1, 3, 6, 6, 3, 1, 8, 7, 4, 7, 4, 0, 6, 3, 6, 8, 7, 9, 2, 0, 0, 0, 0, 0, 0, 3, 0, 8, 4, 6, 4, 3, 2, 2, 1, 2, 9, 9, 8, 1, 1, 8, 0, 1, 8, 7, 9, 9, 6, 2, 0, 0, 0, 1
Offset: 70

Views

Author

Mark A. Thomas, Oct 16 2009

Keywords

Comments

Near-integer obtained by taking Ramanujan's constant e^(Pi*sqrt(163)) to the fourth power.

Examples

			exp^(4*Pi*sqrt(163)) = 47507787308251777254639209489097266182144917180394713663187474063...
		

References

  • Henri Cohen, 'A Course in Computational Algebraic Number Theory', Springer-Verlag Berlin Heidelberg New-York 1996, p. 383.

Crossrefs

Programs

A166531 Decimal expansion of A060295^5.

Original entry on oeis.org

1, 2, 4, 7, 2, 5, 7, 1, 5, 6, 0, 1, 9, 6, 3, 7, 3, 0, 4, 8, 5, 6, 1, 0, 7, 5, 2, 0, 0, 1, 8, 0, 7, 4, 5, 5, 2, 5, 6, 6, 8, 2, 4, 5, 8, 5, 8, 6, 2, 9, 9, 5, 2, 7, 2, 1, 7, 3, 3, 6, 8, 8, 1, 5, 7, 9, 4, 0, 8, 5, 4, 9, 5, 7, 9, 2, 2, 9, 9, 6, 2, 1, 0, 9, 3, 7, 4, 3, 9, 9, 9, 9, 9, 3, 6, 5, 4, 1, 8, 7, 4, 6, 8, 9, 7
Offset: 88

Views

Author

Mark A. Thomas, Oct 16 2009

Keywords

Comments

A large near-integer obtained by taking the Ramanujan constant e^(Pi*sqrt(163)) to the fifth power.

Examples

			Equals 1247257156019637304856107520018074552566824585862995272173368815\
794085495792299621093743.99999365418746...
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, 3., corr. print., Springer-Verlag Berlin Heidelberg New York, 1996 pp. 383.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Pi Sqrt[163]]^5,10,120][[1]] (* Harvey P. Dale, Aug 24 2025 *)

Formula

Equals exp(5*Pi*sqrt(163)) = A166529*A166528.

Extensions

Keyword:cons added by R. J. Mathar, Feb 27 2010
Previous Mathematica program replaced by Harvey P. Dale, Aug 24 2025

A181045 Decimal expansion of A060295/24.

Original entry on oeis.org

1, 0, 9, 3, 9, 0, 5, 8, 8, 6, 0, 0, 3, 2, 0, 3, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 8, 7, 5, 3, 0, 2, 4, 8, 8, 3, 2, 5, 7, 7, 3, 7, 0, 3, 6, 6, 3, 9, 7, 4, 4, 0, 1, 4, 0, 5, 5, 7, 0, 7, 9, 5, 2, 6, 1, 2, 8, 1, 4, 0, 5, 8, 7, 6, 5, 7, 5, 8, 7, 7, 6, 9, 9, 6, 2, 5, 4, 9, 4, 1, 9, 7, 1, 3, 7, 2, 9, 6, 5, 8
Offset: 17

Views

Author

Mark A. Thomas, Sep 30 2010

Keywords

Comments

This real number is close to the prime number 10939058860032031. Also, the only (single) integer values placed in the denominator that will generate 'near-integers' from this relation are the divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24 (cf. A018253). A total of 64 'near-integers' can be obtained from generating powers (1-8) of A060295 and dividing each by one of the divisors of 24. Example: The last (64th) 'near-integer' is A060295^8 = 2.25698985492608864738884...99926422461218840012234... *10^139 (which is split by ... for brevity), the digits of which close to the decimal point are ...218840.012234... . While this does not quite look like a 'near-integer' this is where the pattern of 0's and 9's in the decimal tail cease in the case. See A166532.

Examples

			A060295/24 = 10939058860032030.999999999999968753024883257737036639... This is almost the prime 10939058860032031.
		

Crossrefs

Programs

  • Magma
    R:= RealField(); Exp(Pi*Sqrt(163))/24;
  • Mathematica
    E^(Pi Sqrt[163])/24
    RealDigits[Exp[Pi Sqrt[163]]/24, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(Pi*sqrt(163))/24 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(Pi * sqrt(163))/24.

A019297 Integers k such that abs(e^(Pi*sqrt(n)) - k) < 0.01 for some n.

Original entry on oeis.org

-1, 1, 2198, 422151, 614552, 2508952, 6635624, 199148648, 884736744, 24591257752, 30197683487, 147197952744, 545518122090, 70292286279654, 39660184000219160, 45116546012289600, 262537412640768744
Offset: 0

Views

Author

Roy Williams Clickery (roy(AT)ccsf.caltech.edu)

Keywords

Comments

Old name of sequence was "Integers that are very close to values of exp(Pi*sqrt(n))", which left "very close" undefined. Robert G. Wilson v resolved this problem on Feb 28 2006 with the comment that "'Very close' means to within 0.01." - Jon E. Schoenfield, Mar 21 2015

Examples

			e^(Pi*sqrt(163)) = 262537412640768743.99999999999925007259719818568887935385...
		

References

  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 179.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{e = Exp[Pi*Sqrt[n]]}, Abs[e - Round[e]]]; Round @ Exp[Pi*Sqrt @ Select[Range[ -1, 200], f @ # < 10^(-2) &]] (* Robert G. Wilson v, Feb 28 2006 *)

Extensions

New name, based on Feb 28 2006 comment from Robert G. Wilson v, from Jon E. Schoenfield, Mar 21 2015
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016

A102912 Decimal expansion of a close approximation to the Ramanujan constant.

Original entry on oeis.org

2, 6, 2, 5, 3, 7, 4, 1, 2, 6, 4, 0, 7, 6, 8, 7, 4, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 5, 1, 1, 2, 3, 8, 7, 5, 9, 3, 6, 7, 9, 9, 8, 0, 0, 9, 5, 4, 4, 1, 7, 3, 6, 7, 9, 1, 0, 2, 2, 7, 7, 1, 6, 6, 3, 5, 3, 5, 7, 0, 9, 1, 7, 6, 1, 3, 7, 3, 3, 3, 4, 1, 0, 0, 6, 2, 8, 1, 0, 4, 9, 2, 7, 6, 5, 1, 0, 4, 2, 4, 8, 7
Offset: 18

Views

Author

Eric W. Weisstein, Jan 17 2005

Keywords

Comments

First differs from Ramanujan's constant (A060295) at a(33). - Omar E. Pol, Jun 26 2012
Kontsevich & Zagier give also exp(3*log(640320)) = 2.62537412640768000... as a close approximation to the Ramanujan constant. - Jean-François Alcover, Jun 22 2015

Examples

			262537412640768743.999999999999251123875936799800954417367910227716...
		

Crossrefs

Cf. A060295.

Programs

  • Mathematica
    RealDigits[ Root[ #^3 - 6#^2 + 4# - 2 &, 1]^24 - 24, 10, 111][[1]]

Formula

Equals: Real root of x^3 - 6*x^2 + 4*x - 2 = 0, being x_{real} = (6 + (3*(45 + sqrt(489)))^(1/3) + (3*(45 - sqrt(489)))^(1/3))/3 = 5.31863, evaluated as (x_{real})^24 - 24. - G. C. Greubel, Feb 15 2018

A058292 Continued fraction for e^(Pi*sqrt(163)).

Original entry on oeis.org

262537412640768743, 1, 1333462407511, 1, 8, 1, 1, 5, 1, 4, 1, 7, 1, 1, 1, 9, 1, 1, 2, 12, 4, 1, 15, 4, 299, 3, 5, 1, 4, 5, 5, 1, 28, 3, 1, 9, 4, 1, 6, 1, 1, 1, 1, 1, 1, 51, 11, 5, 3, 2, 1, 1, 1, 1, 2, 1, 5, 1, 9, 1, 2, 14, 1, 82, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

The real number e^(pi*sqrt(163)) ~ a(0)+1-1/a(2) (cf also the Example section) is called Ramanujan's constant: See the main entry A060295 for further information. - M. F. Hasler, Jan 26 2014

Examples

			e^(Pi*Sqrt(163)) = 262537412640768743.99999999999925007259719818568887935385...
		

References

  • Flajolet, Philippe, and Brigitte Vallée. "Continued fractions, comparison algorithms, and fine structure constants." Constructive, Experimental, and Nonlinear Analysis 27 (2000): 53-82. See Fig. 3.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 179.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ E^(Pi*Sqrt[163]), 100 ]
  • PARI
    default(realprecision,99);contfrac(exp(Pi*sqrt(163))) \\ With standard precision (38 digits), contfrac() returns only [a(0)+1]. - M. F. Hasler, Jan 26 2014

A160514 A nonsense sequence.

Original entry on oeis.org

256, 9, 25, 49, 119663008743245277588690345984961
Offset: 1

Views

Author

Mark A. Thomas, May 16 2009

Keywords

Comments

Previous name was: The sequence is: 2^8, 3^2, 5^2, 7^2, 10939058860032031^2 where 10939058860032031 is prime and where its order is an integer 337736875876935471466319632507953926400 and is equal to ((640320)^3 + 744)^2 * 70^2 where (640320)^3 + 744 is an integer value which is nearly Ramanujan's constant and 1^2 + 2^2 + 3^2 + ... + 22^2 + 23^2 + 24^2 = 70^2 which is related to the norm vector 0 used in construction of the Leech lattice.
The prime number 10939058860032031 = 2^15, 3^2, 5^3, 23^3, 29^3 + 31 Ramanujan's constant: e^(Pi*sqrt(163))= 640320^3 + 743.99999999999925 = A060295.

Programs

  • Mathematica
    Power[#1, #2] & @@@ FactorInteger[(640320^3 + 744)^2*70^2] (* Michael De Vlieger, Dec 19 2015 *)

Formula

(640320^3 + 744)^2 * 70^2 = A160515.

Extensions

Partially edited by R. J. Mathar, May 30 2009
Showing 1-10 of 26 results. Next