cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mark A. Thomas

Mark A. Thomas's wiki page.

Mark A. Thomas has authored 30 sequences. Here are the ten most recent ones:

A322171 Expansion of x*(3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)).

Original entry on oeis.org

3, 11, 17, 19, 23, 31, 37, 39, 43, 51, 57, 59, 63, 71, 77, 79, 83, 91, 97, 99, 103, 111, 117, 119, 123, 131, 137, 139, 143, 151, 157, 159, 163, 171, 177, 179, 183, 191, 197, 199, 203, 211, 217, 219, 223, 231, 237, 239, 243, 251, 257, 259, 263, 271, 277, 279, 283, 291, 297, 299
Offset: 1

Author

Mark A. Thomas, Nov 29 2018

Keywords

Crossrefs

Cf. A228826.

Programs

  • Magma
    I:=[3,11,17,19]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Dec 06 2018
  • Maple
    seq(coeff(series(x*(x^3+x^2+5*x+3)/((1-x)^2*(1+x^2)),x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + 5 x + 3)/((x - 1)^2 (x^2 + 1)), {x, 0, 50}], x] (* or *)
    a[n_]:= (1/2) (10 n - (1 + 2 * I) (-I)^n - (1 - 2 I) I^n); Simplify[Array[a, 50]] (* Stefano Spezia, Nov 29 2018 *)
    LinearRecurrence[{2, -2, 2, -1}, {3, 11, 17, 19}, 60] (* Vincenzo Librandi, Dec 06 2018 *)
  • PARI
    Vec((3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)) + O(x^60)) \\ Andrew Howroyd, Nov 29 2018
    

Formula

a(n) = (1/2)*(10*n - (1+2*i)*(-i)^n - (1-2*i)*i^n), where i = sqrt(-1).
a(n) = 5*n - 2*sin(Pi*n/2) - cos(Pi*n/2).
a(n) = 5*n - A228826(n-1). - Andrew Howroyd, Nov 29 2018
G.f.: x*(x^3 + x^2 + 5*x + 3) / ((x - 1)^2 *(x^2 + 1)). - Vincenzo Librandi, Dec 06 2018

A320141 a(n) is the sum of the nearest integer to the imaginary part of the n-th zero of the Riemann zeta function and the n-th prime.

Original entry on oeis.org

16, 24, 30, 37, 44, 51, 58, 62, 71, 79, 84, 93, 100, 104, 112, 120, 129, 133, 143, 148, 152, 162, 168, 176, 186, 193, 198, 203, 208, 214, 231, 236, 244, 250, 261, 265, 273, 282, 288, 296, 303, 309, 321, 324, 330, 334, 349, 363, 368, 372, 379, 386, 391, 402, 410, 419, 427, 430, 438, 444
Offset: 1

Author

Mark A. Thomas, Oct 06 2018

Keywords

Examples

			14 + 2 = 16, 21 + 3 = 24, 25 + 5 = 30.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v=apply(round, lfunzeros(lzeta, nn))); vector(#v, n, v[n] + prime(n)); \\

Formula

a(n) = A002410(n) + A000040(n).

A319229 a(n) is equal to the difference between the nearest integer to the imaginary part of the n-th zero of the Riemann zeta function and the n-th prime.

Original entry on oeis.org

12, 18, 20, 23, 22, 25, 24, 24, 25, 21, 22, 19, 18, 18, 18, 14, 11, 11, 9, 6, 6, 4, 2, -2, -8, -9, -8, -11, -10, -12, -23, -26, -30, -28, -37, -37, -41, -44, -46, -50, -55, -53, -61, -62, -64, -64, -73, -83, -86, -86, -87, -92, -91, -100, -104, -107, -111, -112, -116, -118
Offset: 1

Author

Mark A. Thomas, Sep 14 2018

Keywords

Examples

			14 - 2 = 12, 21 - 3 = 18, 25 - 5 = 20.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v=apply(round, lfunzeros(lzeta, nn))); vector(#v, n, v[n] - prime(n)); \\ Michel Marcus, Sep 14 2018

Formula

a(n) = A002410(n) - prime(n).

A198343 Divisors of 196560.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 24, 26, 27, 28, 30, 35, 36, 39, 40, 42, 45, 48, 52, 54, 56, 60, 63, 65, 70, 72, 78, 80, 84, 90, 91, 104, 105, 108, 112, 117, 120, 126, 130, 135, 140, 144, 156, 168, 180, 182, 189, 195, 208, 210, 216, 234, 240, 252, 260, 270, 273, 280, 312, 315, 336, 351, 360, 364, 378, 390, 420, 432, 455
Offset: 1

Author

N. J. A. Sloane, Oct 23 2011, following a suggestion from Mark A. Thomas

Keywords

Comments

196560 is the kissing number of the Leech lattice (cf. A008408). It is a famous number in the "Moonshine" investigations.

Crossrefs

Cf. A008408.

Programs

A181164 Decimal expansion of exp(5*Pi)/8.

Original entry on oeis.org

8, 2, 9, 4, 5, 2, 9, 9, 9, 9, 1, 7, 6, 4, 1, 7, 7, 9, 1, 5, 8, 2, 8, 3, 0, 0, 8, 3, 8, 7, 3, 8, 8, 1, 1, 5, 2, 2, 9, 5, 1, 3, 3, 6, 6, 7, 6, 8, 8, 7, 3, 4, 0, 0, 4, 0, 5, 8, 9, 5, 8, 6, 7, 0, 4, 4, 2, 8, 0, 1, 5, 0, 5, 0, 5, 7, 1, 9, 0, 0, 4, 3, 9, 4, 1, 3, 6, 2, 4, 7, 6, 9, 4, 9, 5, 9, 9, 1, 2, 6, 4, 2, 7, 4, 3
Offset: 6

Author

Mark A. Thomas, Oct 07 2010

Keywords

Comments

This real number is close to the prime number 829453.

Examples

			829452.999917641779158283008387388115229513366768873400405895867044280150...
		

Programs

  • Julia
    using Nemo
    RR = RealField(366)
    t = RR(5) * const_pi(RR)
    exp(t)/RR(8) |> println # Peter Luschny, Mar 13 2018
  • Magma
    R:= RealField(); Exp(5*Pi(R))/8; // G. C. Greubel, Feb 14 2018
    
  • Mathematica
    RealDigits[Exp[5*Pi]/8, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(5*Pi)/8 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(5*Pi)/8.

A181165 Decimal expansion of exp(Pi*sqrt43)/24.

Original entry on oeis.org

3, 6, 8, 6, 4, 0, 3, 0, 9, 9, 9, 9, 9, 0, 7, 2, 7, 7, 5, 1, 4, 5, 4, 4, 4, 4, 2, 4, 7, 3, 9, 4, 2, 5, 3, 2, 7, 4, 3, 9, 0, 7, 0, 1, 9, 7, 4, 9, 6, 3, 6, 3, 0, 7, 9, 8, 3, 7, 1, 5, 6, 3, 1, 0, 9, 4, 9, 3, 1, 0, 3, 6, 7, 1, 4, 5, 3, 1, 1, 4, 9, 6, 7, 4, 5, 6, 8, 1, 5, 1, 7, 9, 6, 0, 8, 4, 3, 2, 1, 5, 4, 5, 8, 9, 0
Offset: 8

Author

Mark A. Thomas, Oct 07 2010

Keywords

Comments

This real number is close to the prime number 36864031.

Examples

			exp(Pi*sqrt(43))/24 = 36864030.9999907277514544442473942532743907019... This is almost the prime 36864031.
		

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(43)); // G. C. Greubel, Feb 14 2018
  • Mathematica
    RealDigits[E^(Pi Sqrt[43])/24,10,120][[1]] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    exp(Pi*sqrt(43))/24 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(Pi*sqrt(43))/24.

A181166 Decimal expansion of exp(Pi*sqrt(67))/24.

Original entry on oeis.org

6, 1, 3, 3, 2, 4, 8, 0, 3, 0, 9, 9, 9, 9, 9, 9, 9, 4, 4, 2, 6, 8, 9, 2, 6, 0, 2, 1, 1, 1, 7, 8, 8, 5, 8, 8, 8, 0, 2, 4, 1, 0, 9, 5, 2, 1, 1, 7, 4, 3, 0, 4, 6, 8, 7, 6, 5, 9, 0, 2, 9, 6, 9, 3, 0, 5, 7, 1, 3, 6, 7, 5, 4, 3, 8, 0, 1, 2, 2, 9, 5, 8, 2, 8, 4, 6, 4, 6, 8, 1, 2, 5, 8, 5, 0, 5, 7, 4, 6, 8, 4, 3, 1, 3, 9
Offset: 10

Author

Mark A. Thomas, Oct 07 2010

Keywords

Comments

This real number is close to the prime number 6133248031.

Examples

			exp(Pi*sqrt(67))/24 = 6133248030.999999944268926021117885888024109521... This is almost the prime 6133248031.
		

Programs

  • Magma
    RealField(); Exp(Pi(R)*Sqrt(67))/24; // G. C. Greubel, Feb 14 2018
  • Mathematica
    E^(Pi Sqrt[67])/24
    RealDigits[Exp[Pi Sqrt[67]]/24, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(Pi*sqrt(67))/24 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(Pi*sqrt(67))/24.

A181163 Decimal expansion of A169624/8.

Original entry on oeis.org

3, 0, 7, 3, 9, 0, 7, 2, 1, 8, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, 7, 6, 6, 5, 5, 1, 8, 3, 6, 9, 7, 0, 2, 4, 0, 4, 4, 4, 0, 8, 2, 2, 6, 5, 2, 8, 4, 5, 1, 2, 7, 1, 3, 8, 3, 9, 3, 3, 7, 2, 2, 5, 9, 3, 4, 0, 9, 9, 4, 0, 2, 0, 2, 5, 0, 5, 7, 9, 8, 4, 7, 4, 5, 6, 4, 7, 9, 0, 9, 3, 7, 0, 8, 3, 5, 8, 3, 2, 9, 9, 0, 8, 1, 8, 3
Offset: 10

Author

Mark A. Thomas, Oct 07 2010

Keywords

Comments

This real number is close to the prime number 3073907219.

Examples

			e^(Pi*sqrt(58))/8 = 3073907218.999999977776655183697024044408226528451271... This is almost the prime 3073907219.
		

Programs

  • Magma
    R:= RealField(); Exp(Pi(R)*Sqrt(58))/8; // G. C. Greubel, Feb 14 2018
  • Mathematica
    E^(Pi Sqrt[58])/8
    RealDigits[Exp[Pi*Sqrt[58]]/8, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(Pi*sqrt(58))/8 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(Pi*sqrt(58))/8.

A181425 Decimal expansion of e^(Pi*sqrt(22))/8.

Original entry on oeis.org

3, 1, 3, 6, 1, 8, 9, 9, 9, 7, 8, 2, 1, 7, 8, 0, 5, 8, 3, 9, 5, 6, 9, 1, 1, 4, 9, 2, 6, 5, 2, 1, 0, 8, 9, 5, 3, 0, 9, 5, 5, 1, 3, 4, 1, 8, 5, 8, 5, 2, 5, 8, 0, 4, 4, 6, 6, 2, 0, 7, 6, 0, 3, 8, 0, 2, 9, 6, 7, 6, 3, 4, 1, 7, 9, 5, 2, 9, 7, 7, 3, 2, 1, 6, 4, 6, 6, 8, 0, 6, 3, 9, 9, 3, 4, 3, 3, 7, 8, 2, 1, 3, 3, 4, 2
Offset: 6

Author

Mark A. Thomas, Oct 18 2010

Keywords

Comments

This real number is close to the prime number 313619.

Examples

			e^(Pi*sqrt(22))/8 = 313618.99978217805839569114926521089530955134185852580...
This is almost the prime 313619.
		

Programs

Formula

e^(Pi*sqrt(22))/8.

Extensions

Prior Mathematica program replaced by Harvey P. Dale, Apr 22 2018

A181045 Decimal expansion of A060295/24.

Original entry on oeis.org

1, 0, 9, 3, 9, 0, 5, 8, 8, 6, 0, 0, 3, 2, 0, 3, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 8, 7, 5, 3, 0, 2, 4, 8, 8, 3, 2, 5, 7, 7, 3, 7, 0, 3, 6, 6, 3, 9, 7, 4, 4, 0, 1, 4, 0, 5, 5, 7, 0, 7, 9, 5, 2, 6, 1, 2, 8, 1, 4, 0, 5, 8, 7, 6, 5, 7, 5, 8, 7, 7, 6, 9, 9, 6, 2, 5, 4, 9, 4, 1, 9, 7, 1, 3, 7, 2, 9, 6, 5, 8
Offset: 17

Author

Mark A. Thomas, Sep 30 2010

Keywords

Comments

This real number is close to the prime number 10939058860032031. Also, the only (single) integer values placed in the denominator that will generate 'near-integers' from this relation are the divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24 (cf. A018253). A total of 64 'near-integers' can be obtained from generating powers (1-8) of A060295 and dividing each by one of the divisors of 24. Example: The last (64th) 'near-integer' is A060295^8 = 2.25698985492608864738884...99926422461218840012234... *10^139 (which is split by ... for brevity), the digits of which close to the decimal point are ...218840.012234... . While this does not quite look like a 'near-integer' this is where the pattern of 0's and 9's in the decimal tail cease in the case. See A166532.

Examples

			A060295/24 = 10939058860032030.999999999999968753024883257737036639... This is almost the prime 10939058860032031.
		

Crossrefs

Programs

  • Magma
    R:= RealField(); Exp(Pi*Sqrt(163))/24;
  • Mathematica
    E^(Pi Sqrt[163])/24
    RealDigits[Exp[Pi Sqrt[163]]/24, 10, 100][[1]] (* G. C. Greubel, Feb 14 2018 *)
  • PARI
    exp(Pi*sqrt(163))/24 \\ G. C. Greubel, Feb 14 2018
    

Formula

Equals exp(Pi * sqrt(163))/24.