cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242216 Number of partitions of n into Heegner numbers, cf. A003173.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 21, 25, 30, 36, 42, 49, 57, 66, 76, 87, 100, 114, 129, 146, 165, 185, 207, 232, 258, 287, 318, 352, 389, 428, 471, 517, 566, 619, 676, 737, 802, 872, 947, 1027, 1112, 1203, 1300, 1402, 1512, 1628, 1751, 1882, 2020, 2167, 2322
Offset: 0

Views

Author

Reinhard Zumkeller, May 07 2014

Keywords

Comments

Heegner numbers = A003173(1..9) = {1,2,3,7,11,19,43,67,163}.

Examples

			a(10) = #{7+3, 7+2+1, 7+1+1+1, 3+3+3+1, 3+3+2+2, 3+3+2+1+1, 3+3+4x1, 3+2+2+2+1, 3+2+2+1+1+1, 3+2+5x1, 3+7x1, 5x2, 4x2+1+1, 2+2+2+4x1, 2+2+6x1, 2+8x1, 10x1} = 17;
a(11) = #{11, 7+3+1, 7+2+2, 7+2+1+1, 7+4x1, 3+3+3+2, 3+3+3+1+1, 3+3+2+2+1, 3+3+2+1+1+1, 3+3+5x1, 3+4x2, 3+2+2+2+1+1, 3+2+2+4x1, 3+2+6x1, 3+8x1, 5x2+1, 4x2+1+1+1,2+2+2+5x1, 2+2+7x1, 2+9x1, 11x1} = 21;
a(12) = #{11+1, 7+3+2, 7+3+1+1, 7+2+2+1, 7+2+1+1+1, 7+5*1, 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1, 3+3+2+4x1, 3+3+6x1, 3+4x2+1, 3+2+2+2+1+1+1, 3+2+2+5x1, 3+2+7x1, 3+9x1, 6x2, 5x2+1+1, 4x2+4x1, 2+2+2+6x1, 2+2+8x1, 2+10x1, 12x1} = 25.
		

Crossrefs

Cf. A242217.

Programs

  • Haskell
    a242216 = p [1,2,3,7,11,19,43,67,163] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    
  • Magma
    [#RestrictedPartitions(n,{1, 2, 3, 7, 11, 19, 43, 67, 163}):n in [1..60]]; // Marius A. Burtea, Jun 10 2019
  • Mathematica
    heegnerNums = {1, 2, 3, 7, 11, 19, 43, 67, 163};
    a[n_] := Length @ IntegerPartitions[n, All, heegnerNums];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 10 2019 *)
Showing 1-1 of 1 results.