cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242217 Number of partitions of n into distinct Heegner numbers, cf. A003173.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Reinhard Zumkeller, May 07 2014

Keywords

Comments

Heegner numbers = A003173(1..9) = {1,2,3,7,11,19,43,67,163};
0 <= a(n) <= 3;
for n > 316: a(n) = 0; 154 = smallest number m such that a(m) = 0;
number of terms greater than 0 = 303;
sum of all terms = 512.

Examples

			a(10) = #{7+3, 7+2+1} = 2;
a(11) = #{11, 7+3+1} = 2;
a(12) = #{11+1, 7+3+2} = 2;
a(13) = #{11+2, 7+3+2+1} = 2;
a(14) = #{11+3, 11+2+1} = 2;
a(15) = #{11+3+1} = 1;
a(16) = #{11+3+2} = 1;
a(17) = #{11+3+2+1} = 1;
a(18) = #{11+7} = 1;
a(19) = #{19, 11+7+1} = 2;
a(20) = #{19+1, 11+7+2} = 2;
a(316) = #{163+67+43+19+11+7+3+2+1} = 1.
		

Crossrefs

Cf. A242216.

Programs

  • Haskell
    a242217 = p [1,2,3,7,11,19,43,67,163] where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    heegnerNums = {1,2,3,7,11,19,43,67,163};
    a[n_] := a[n] = Count[IntegerPartitions[n, All, heegnerNums], P_List /; Sort[P] == Union[P]];
    Table[Print[n," ", a[n]]; a[n], {n,0,316}] (* Jean-François Alcover, Jun 10 2019 *)
Showing 1-1 of 1 results.