A017765
Binomial coefficients C(49,n).
Original entry on oeis.org
1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 450978066, 2054455634, 8217822536, 29135916264, 92263734836, 262596783764, 675248872536, 1575580702584, 3348108992991, 6499270398159, 11554258485616, 18851684897584, 28277527346376
Offset: 0
-
[Binomial(49,n): n in [0..49]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(49,n), n=0..49); # Nathaniel Johnston, Jun 24 2011
-
Binomial[49,Range[0,50]] (* Harvey P. Dale, Feb 17 2015 *)
-
vector(49, n, n--; binomial(49,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(49, n) for n in range(50)] # Zerinvary Lajos, May 21 2009
A017816
Binomial coefficients C(100,n).
Original entry on oeis.org
1, 100, 4950, 161700, 3921225, 75287520, 1192052400, 16007560800, 186087894300, 1902231808400, 17310309456440, 141629804643600, 1050421051106700, 7110542499799200, 44186942677323600, 253338471349988640, 1345860629046814650, 6650134872937201800
Offset: 0
A010928
Binomial coefficient C(12,n).
Original entry on oeis.org
1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 0
-
[Binomial(12, n): n in [0..12]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(12,n), n=0..12); # Nathaniel Johnston, Jun 23 2011
-
q = 12; Join[{a = 1}, Table[a = (q - n)*a/(n + 1), {n, 0, q - 1}]] (* Vladimir Joseph Stephan Orlovsky, Jul 09 2011 *)
Binomial[12,Range[0,12]] (* Harvey P. Dale, Jul 02 2018 *)
-
[binomial(12,m) for m in range(13)] # Zerinvary Lajos, Apr 21 2009
A017768
Binomial coefficients C(52,n).
Original entry on oeis.org
1, 52, 1326, 22100, 270725, 2598960, 20358520, 133784560, 752538150, 3679075400, 15820024220, 60403728840, 206379406870, 635013559600, 1768966344600, 4481381406320, 10363194502115, 21945588357420, 42671977361650, 76360380541900, 125994627894135
Offset: 0
-
[Binomial(52,n): n in [0..52]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(52,n), n=0..52); # Nathaniel Johnston, Jun 24 2011
-
Binomial[52,Range[0,50]] (* Harvey P. Dale, Jun 02 2017 *)
-
vector(52, n, n--; binomial(52,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(52, n) for n in range(53)] # Zerinvary Lajos, May 23 2009
A010940
Binomial coefficient C(24,n).
Original entry on oeis.org
1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1
Offset: 0
-
[Binomial(24, n): n in [0..24]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(24,n), n=0..24); # Nathaniel Johnston, Jun 24 2011
-
q = 24; Join[{a = 1}, Table[a = (q - n)*a/(n + 1), {n, 0, q - 1}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)
Binomial[24,Range[0,24]] (* Harvey P. Dale, Jun 03 2014 *)
-
[binomial(24,m) for m in range(25)] # Zerinvary Lajos, Apr 21 2009
A017770
Binomial coefficients C(54,n).
Original entry on oeis.org
1, 54, 1431, 24804, 316251, 3162510, 25827165, 177100560, 1040465790, 5317936260, 23930713170, 95722852680, 343006888770, 1108176102180, 3245372870670, 8654327655120, 21094923659355, 47153358767970, 96926348578605, 183649923622620, 321387366339585
Offset: 0
-
[Binomial(54,n): n in [0..54]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(54,n), n=0..54); # Nathaniel Johnston, Jun 24 2011
-
Binomial[54,Range[0,54]] (* G. C. Greubel, Nov 13 2018 *)
-
vector(54, n, n--; binomial(54,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(54, n) for n in range(55)] # Zerinvary Lajos, May 23 2009
A017771
Binomial coefficients C(55,n).
Original entry on oeis.org
1, 55, 1485, 26235, 341055, 3478761, 28989675, 202927725, 1217566350, 6358402050, 29248649430, 119653565850, 438729741450, 1451182990950, 4353548972850, 11899700525790, 29749251314475, 68248282427325, 144079707346575, 280576272201225, 505037289962205
Offset: 0
-
[Binomial(55,n): n in [0..55]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(55,n), n=0..55); # Nathaniel Johnston, Jun 24 2011
-
Binomial[55,Range[0,55]] (* Harvey P. Dale, Feb 26 2013 *)
-
vector(55, n, n--; binomial(55,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(55, n) for n in range(56)] # Zerinvary Lajos, May 28 2009
A017772
Binomial coefficients C(56,n).
Original entry on oeis.org
1, 56, 1540, 27720, 367290, 3819816, 32468436, 231917400, 1420494075, 7575968400, 35607051480, 148902215280, 558383307300, 1889912732400, 5804731963800, 16253249498640, 41648951840265, 97997533741800, 212327989773900, 424655979547800, 785613562163430
Offset: 0
-
[Binomial(56,n): n in [0..56]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(56,n), n=0..56); # Nathaniel Johnston, Jun 24 2011
-
Binomial[56,Range[0,20]] (* Harvey P. Dale, Sep 05 2013 *)
-
vector(56, n, n--; binomial(56,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(56, n) for n in range(57)] # Zerinvary Lajos, May 28 2009
A017773
Binomial coefficients C(57,n).
Original entry on oeis.org
1, 57, 1596, 29260, 395010, 4187106, 36288252, 264385836, 1652411475, 8996462475, 43183019880, 184509266760, 707285522580, 2448296039700, 7694644696200, 22057981462440, 57902201338905, 139646485582065, 310325523515700, 636983969321700
Offset: 0
-
[Binomial(57,n): n in [0..57]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(57,n), n=0..57); # Nathaniel Johnston, Jun 24 2011
-
Binomial[57, Range[0,57]] (* G. C. Greubel, Nov 13 2018 *)
-
vector(57, n, n--; binomial(57,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(57, n) for n in range(58)] # Zerinvary Lajos, May 28 2009
A017774
Binomial coefficients C(58,n).
Original entry on oeis.org
1, 58, 1653, 30856, 424270, 4582116, 40475358, 300674088, 1916797311, 10648873950, 52179482355, 227692286640, 891794789340, 3155581562280, 10142940735900, 29752626158640, 79960182801345, 197548686920970, 449972009097765, 947309492837400
Offset: 0
-
[Binomial(58,n): n in [0..58]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(58,n), n=0..58); # Nathaniel Johnston, Jun 24 2011
-
Binomial[58, Range[0,58]] (* or *) With[{nmax = 58}, CoefficientList[ Series[Hypergeometric1F1[-58, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
-
vector(58, n, n--; binomial(58,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(58, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
Showing 1-10 of 91 results.
Comments