cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 91 results. Next

A017765 Binomial coefficients C(49,n).

Original entry on oeis.org

1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 450978066, 2054455634, 8217822536, 29135916264, 92263734836, 262596783764, 675248872536, 1575580702584, 3348108992991, 6499270398159, 11554258485616, 18851684897584, 28277527346376
Offset: 0

Views

Author

Keywords

Comments

Row 49 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^49.
E.g.f.: 1F1(-49; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017816 Binomial coefficients C(100,n).

Original entry on oeis.org

1, 100, 4950, 161700, 3921225, 75287520, 1192052400, 16007560800, 186087894300, 1902231808400, 17310309456440, 141629804643600, 1050421051106700, 7110542499799200, 44186942677323600, 253338471349988640, 1345860629046814650, 6650134872937201800
Offset: 0

Views

Author

Keywords

Comments

Row 100 of A007318.

Crossrefs

Programs

A010928 Binomial coefficient C(12,n).

Original entry on oeis.org

1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 0

Views

Author

Keywords

Comments

Row 12 of A007318.
Also number of positions that are exactly n moves from the starting position in the Orbix Type 1 puzzle. This is the number of positions that can be reached in n moves from the start, but which cannot be reached in fewer than n moves. A puzzle in the Rubik cube family. The total number of distinct positions is 4096. Here positions differing by rotations or reflections are considered distinct.
If the sequence is extended by trailing zeros, its binomial transform yields A010965. - R. J. Mathar, Sep 19 2008

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007

A017768 Binomial coefficients C(52,n).

Original entry on oeis.org

1, 52, 1326, 22100, 270725, 2598960, 20358520, 133784560, 752538150, 3679075400, 15820024220, 60403728840, 206379406870, 635013559600, 1768966344600, 4481381406320, 10363194502115, 21945588357420, 42671977361650, 76360380541900, 125994627894135
Offset: 0

Views

Author

Keywords

Comments

Row 52 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^52.
E.g.f.: 1F1(-52; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A010940 Binomial coefficient C(24,n).

Original entry on oeis.org

1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1
Offset: 0

Views

Author

Keywords

Comments

Row 24 of A007318.

Crossrefs

Programs

A017770 Binomial coefficients C(54,n).

Original entry on oeis.org

1, 54, 1431, 24804, 316251, 3162510, 25827165, 177100560, 1040465790, 5317936260, 23930713170, 95722852680, 343006888770, 1108176102180, 3245372870670, 8654327655120, 21094923659355, 47153358767970, 96926348578605, 183649923622620, 321387366339585
Offset: 0

Views

Author

Keywords

Comments

Row 54 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^54.
E.g.f.: 1F1(-54; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017771 Binomial coefficients C(55,n).

Original entry on oeis.org

1, 55, 1485, 26235, 341055, 3478761, 28989675, 202927725, 1217566350, 6358402050, 29248649430, 119653565850, 438729741450, 1451182990950, 4353548972850, 11899700525790, 29749251314475, 68248282427325, 144079707346575, 280576272201225, 505037289962205
Offset: 0

Views

Author

Keywords

Comments

Row 55 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^55.
E.g.f.: 1F1(-55; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017772 Binomial coefficients C(56,n).

Original entry on oeis.org

1, 56, 1540, 27720, 367290, 3819816, 32468436, 231917400, 1420494075, 7575968400, 35607051480, 148902215280, 558383307300, 1889912732400, 5804731963800, 16253249498640, 41648951840265, 97997533741800, 212327989773900, 424655979547800, 785613562163430
Offset: 0

Views

Author

Keywords

Comments

Row 56 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^56.
E.g.f.: 1F1(-56; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017773 Binomial coefficients C(57,n).

Original entry on oeis.org

1, 57, 1596, 29260, 395010, 4187106, 36288252, 264385836, 1652411475, 8996462475, 43183019880, 184509266760, 707285522580, 2448296039700, 7694644696200, 22057981462440, 57902201338905, 139646485582065, 310325523515700, 636983969321700
Offset: 0

Views

Author

Keywords

Comments

Row 57 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^57.
E.g.f.: 1F1(-57; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017774 Binomial coefficients C(58,n).

Original entry on oeis.org

1, 58, 1653, 30856, 424270, 4582116, 40475358, 300674088, 1916797311, 10648873950, 52179482355, 227692286640, 891794789340, 3155581562280, 10142940735900, 29752626158640, 79960182801345, 197548686920970, 449972009097765, 947309492837400
Offset: 0

Views

Author

Keywords

Comments

Row 58 of A007318.

Crossrefs

Programs

  • Magma
    [Binomial(58,n): n in [0..58]]; // G. C. Greubel, Nov 13 2018
  • Maple
    seq(binomial(58,n), n=0..58); # Nathaniel Johnston, Jun 24 2011
  • Mathematica
    Binomial[58, Range[0,58]] (* or *) With[{nmax = 58}, CoefficientList[ Series[Hypergeometric1F1[-58, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
  • PARI
    vector(58, n, n--; binomial(58,n)) \\ G. C. Greubel, Nov 13 2018
    
  • Sage
    [binomial(58, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
    

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^58.
E.g.f.: 1F1(-58; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Showing 1-10 of 91 results. Next