A002761
Number of ways of getting a royal flush, other straight flush, 4 of a kind, full house, other flush, other straight, 3 of a kind, 2 pair, a pair or nothing in 5-card poker.
Original entry on oeis.org
4, 36, 624, 3744, 5108, 10200, 54912, 123552, 1098240, 1302540
Offset: 1
- J. Scarne, Scarne's Complete Guide to Gambling, Simon and Schuster, 1961, p. 582.
A002806
Number of ways of getting nothing, a pair, 2 pair, 3 of a kind, other straight, other flush, full house, 4 of a kind, other straight flush, or a royal flush in 5-card poker.
Original entry on oeis.org
1302540, 1098240, 123552, 54912, 10200, 5108, 3744, 624, 36, 4
Offset: 1
- J. Scarne, Scarne's Complete Guide to Gambling, Simon and Schuster, 1961, p. 582.
A017769
Binomial coefficients C(53,n).
Original entry on oeis.org
1, 53, 1378, 23426, 292825, 2869685, 22957480, 154143080, 886322710, 4431613550, 19499099620, 76223753060, 266783135710, 841392966470, 2403979904200, 6250347750920, 14844575908435, 32308782859535, 64617565719070, 119032357903550, 202355008436035
Offset: 0
-
[Binomial(53,n): n in [0..53]]; // G. C. Greubel, Nov 13 2018
-
seq(binomial(53,n), n=0..53); # Nathaniel Johnston, Jun 24 2011
-
With[{k = 53}, Array[Binomial[k, #] &, k + 1, 0]] (* Michael De Vlieger, Jul 06 2018 *)
With[{nmax = 53}, CoefficientList[Series[Hypergeometric1F1[-53, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
-
vector(53, n, n--; binomial(53,n)) \\ G. C. Greubel, Nov 13 2018
-
[binomial(53, n) for n in range(54)] # Zerinvary Lajos, May 23 2009
Showing 1-3 of 3 results.
Comments