cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A161344 Numbers k with A033676(k)=2, where A033676 is the largest divisor <= sqrt(k).

Original entry on oeis.org

4, 6, 8, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Define a sieve operation with parameter s that eliminates integers of the form s^2 + s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=2 and cannot be eliminated by any sieve s >= 3. - R. J. Mathar, Jun 24 2009
After a(3)=8 all terms are 2*prime; for n > 3, a(n) = 2*prime(n-1) = 2*A000040(n-1). - Zak Seidov, Jul 18 2009
From Omar E. Pol, Jul 18 2009: (Start)
A classification of the natural numbers A000027.
=============================================================
Numbers k whose largest divisor <= sqrt(k) equals j
=============================================================
j Sequence Comment
=============================================================
1 ..... A008578 1 together with the prime numbers
2 ..... A161344 This sequence
3 ..... A161345
4 ..... A161424
5 ..... A161835
6 ..... A162526
7 ..... A162527
8 ..... A162528
9 ..... A162529
10 .... A162530
11 .... A162531
12 .... A162532
... And so on. (End)
The numbers k whose largest divisor <= sqrt(k) is j are exactly those numbers j*m where m is either a prime >= k or one of the numbers in row j of A163925. - Franklin T. Adams-Watters, Aug 06 2009
See also A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009
Also A100484 UNION 8. - Omar E. Pol, Nov 29 2012 (after Seidov and Hasler)
Is this the union of {4} and A073582? - R. J. Mathar, May 30 2025

Crossrefs

Second column of array in A163280. Also, second row of array in A163990.

Programs

  • Maple
    isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161344 := proc(n) for s from 3 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,2) ; end: for n from 1 to 3000 do if isA161344(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
  • Mathematica
    a[n_] := If[n <= 3, 2n+2, 2*Prime[n-1]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Nov 26 2012, after Zak Seidov *)
  • PARI
    a(n)=if(n>3,prime(n-1),n+1)*2 \\ M. F. Hasler, Nov 27 2012

Formula

Equals 2*A000040 union {8}. - M. F. Hasler, Nov 27 2012
a(n) = 2*A046022(n+1) = 2*A175787(n). - Omar E. Pol, Nov 27 2012

Extensions

More terms from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009

A161345 Numbers k whose largest divisor <= sqrt(k) is 3.

Original entry on oeis.org

9, 12, 15, 18, 21, 27, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Define a sieve operation with parameter s that eliminates integers of the form s^2+s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=3 and cannot be eliminated by any sieve s >= 4. - R. J. Mathar, Jun 24 2009
See A161344 for more information. - Omar E. Pol, Jul 05 2009
See also the array in A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009
Union of {12, 18, 27} and all the numbers of the form 3*p, where p is an odd prime. - Amiram Eldar, Apr 17 2024

Crossrefs

Third column of the array in A163280. Also, third row of array in A163990. - Omar E. Pol, Oct 24 2009

Programs

  • Maple
    isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161345 := proc(n) for s from 4 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,3) ; end: for n from 1 to 3000 do if isA161345(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
  • Mathematica
    md3Q[n_]:=Max[Select[Divisors[n],#<=Sqrt[n]&]]==3; Select[Range[800],md3Q] (* Harvey P. Dale, Aug 12 2013 *)

Formula

Numbers k such that A033676(k)=3. - Omar E. Pol, Jul 05 2009

Extensions

Terms beyond a(10) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009

A161424 Numbers k whose largest divisor <= sqrt(k) equals 4.

Original entry on oeis.org

16, 20, 24, 28, 32, 44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Define a sieve operation with parameter s that eliminates integers of the form s^2 + s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=4 and cannot be eliminated by any sieve s >= 5. - R. J. Mathar, Jun 24 2009
See A161344 for more information. - Omar E. Pol, Jul 05 2009
See also the array in A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009

Crossrefs

Cf. Fourth column of array in A163280. Also, fourth row of array in A163990. - Omar E. Pol, Oct 24 2009

Programs

  • Maple
    isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161424 := proc(n) for s from 5 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,4) ; end: for n from 1 to 3000 do if isA161424(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
  • Mathematica
    Select[Range[1, 1000], Function[m, Max[Select[Divisors[m], # <= Sqrt[m] &]] == 4]] (* Ashton Baker, Nov 03 2013 *)

Formula

Numbers n such that A033676(n)=4. - Omar E. Pol, Jul 05 2009

Extensions

Terms beyond a(8) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009

A018261 Divisors of 48.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 24, 48
Offset: 1

Views

Author

Keywords

Comments

48 is a highly composite number: A002182(8)=48. - Reinhard Zumkeller, Jun 21 2010
These are the orders, without repetition, of the finite subgroups of GL_3(Z); see Conway and Sloane. - Hal M. Switkay, Nov 06 2023

Crossrefs

Programs

A018412 Divisors of 360.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
Offset: 1

Views

Author

Keywords

Comments

Comment from J. Lowell: Regular polygons with n sides in which internal angles have integral number of degrees (n >= 3).
360 is a highly composite number: A002182(13) = 360. - Reinhard Zumkeller, Jun 21 2010
There are 22209 ways to represent 360 as a sum of its distinct divisors (A033630). That's more than any smaller number, hence 360 is in A065218. - Alonso del Arte, Oct 09 2017

Crossrefs

Programs

A018256 Divisors of 36.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 36
Offset: 1

Views

Author

Keywords

Comments

36 is a highly composite number: A002182(7)=36. - Reinhard Zumkeller, Jun 21 2010
Numbers with all prime indices and exponents <= 2. Reversing inequalities gives A062739, strict A353502. - Gus Wiseman, Jun 28 2022

Crossrefs

Programs

Formula

Intersection of A003586 (3-smooth) and A004709 (cubefree). - Gus Wiseman, Jun 28 2022

A046073 Number of squares in multiplicative group modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, 3, 2, 2, 8, 3, 9, 2, 3, 5, 11, 1, 10, 6, 9, 3, 14, 2, 15, 4, 5, 8, 6, 3, 18, 9, 6, 2, 20, 3, 21, 5, 6, 11, 23, 2, 21, 10, 8, 6, 26, 9, 10, 3, 9, 14, 29, 2, 30, 15, 9, 8, 12, 5, 33, 8, 11, 6, 35, 3, 36, 18, 10, 9, 15, 6, 39, 4, 27, 20, 41, 3, 16, 21
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of different diagonal elements in Cayley table for multiplicative group modulo n. But the fact that the same number of different elements are on the diagonal of the Cayley table does not mean in every case that these groups are isomorphic. - Artur Jasinski, Jul 03 2010
The number of quadratic residues modulo n that are coprime to n. These residues are listed in A096103. - Peter Munn, Mar 10 2021

References

  • Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 95, 1993.

Crossrefs

Row lengths of A096103.
Positions of ones: A018253.

Programs

  • Maple
    F:= n -> nops({seq}(`if`(igcd(t,n)=1,t^2 mod n,NULL), t=1..floor(n/2))):
    1, seq(F(n), n=2..100); # Robert Israel, Jan 04 2015
    # 2nd program
    A046073 := proc(n)
        local a,p,e,pf;
        a := 1;
        for pf in ifactors(n)[2] do
            p := op(1,pf) ;
            e := op(2,pf) ;
            if p = 2 then
                a := a*p^max(e-3,0) ;
            else
                a := a*(p-1)/2*p^(e-1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 03 2016
  • Mathematica
    Table[EulerPhi[n]/Sum[Boole[Mod[k^2, n] == 1] + Boole[n == 1], {k, n}], {n, 86}] (* or *)
    Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, p == 2, 2^Max[e - 3, 0], True, (p - 1) p^(e - 1)/2]], {n, 86}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    A060594(n) = if(n<=2, 1, 2^#znstar(n)[3]); \\ This function from Joerg Arndt, Jan 06 2015
    A046073(n) = eulerphi(n)/A060594(n); \\ Antti Karttunen, Jul 17 2017, after Sharon Sela's Mar 09 2002 formula.
    
  • PARI
    A046073(n)=if(n>4,(n=znstar(n))[1]>>#n[3],1) \\ Avoids duplicate computation of phi(n). - M. F. Hasler, Nov 27 2017, typo fixed Mar 11 2021
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod([2**max(e - 3, 0) if p==2 else (p - 1)*p**(e - 1)//2 for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 17 2017
  • Scheme
    (define (A046073 n) (cond ((= 1 n) n) ((even? n) (* (A000079 (max (- (A007814 n) 3) 0)) (A046073 (A028234 n)))) (else (* (/ 1 2) (- (A020639 n) 1) (/ (A028233 n) (A020639 n)) (A046073 (A028234 n)))))) ;; Antti Karttunen, Jul 17 2017, after the given multiplicative formula.
    

Formula

a(n) * A060594(n) = A000010(n) = phi(n) (This gives a formula for a(n) using the one in A060594(n) ). - Sharon Sela (sharonsela(AT)hotmail.com), Mar 09 2002
Multiplicative with a(2^e) = 2^max(e-3,0), a(p^e) = (p-1)*p^(e-1)/2 for p an odd prime.
Sum_{k=1..n} a(k) ~ c * n^2/sqrt(log(n)), where c = (43/(80*sqrt(Pi))) * Product_{p prime} (1+1/(2*p))*sqrt(1-1/p) = 0.24627260085060864229... (Finch and Sebah, 2006). - Amiram Eldar, Oct 18 2022

Extensions

Edited and verified by Franklin T. Adams-Watters, Nov 07 2006

A018266 Divisors of 60.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Offset: 1

Views

Author

Keywords

Comments

Sequence is finite with last term a(12) = 60; A000005(60) = 12. - Reinhard Zumkeller, Dec 08 2009.
60 is a highly composite number: A002182(9) = 60. - Reinhard Zumkeller, Jun 21 2010
There are 35 ways to partition 60 as a sum of its distinct divisors (see A033630). This is more than any smaller number (hence 60 is listed in A065218). - Alonso del Arte, Oct 12 2017

Crossrefs

Programs

Formula

a(n) = n + floor((n-1)/6)*(60/(13-n)-n). - Aaron J Grech, Aug 11 2024

A018609 Divisors of 720.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
Offset: 1

Views

Author

Keywords

Comments

720 is a highly composite number: A002182(14)=720. - Reinhard Zumkeller, Jun 21 2010

Crossrefs

Programs

A161710 a(n) = (-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^3 + 22561*n^2 - 7302*n + 2520)/2520.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 24, 39, -2, -295, -1308, -3980, -9996, -22150, -44808, -84483, -150534, -256001, -418588, -661806, -1016288, -1521288, -2226376, -3193341, -4498314, -6234123, -8512892, -11468896, -15261684, -20079482, -26142888
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 8} = divisors of 24:
a(n) = A027750(A006218(23) + k + 1), 0 <= k < A000005(24).

Examples

			Differences of divisors of 24 to compute the coefficients of their interpolating polynomial, see formula:
1 ... 2 ... 3 ... 4 ... 6 ... 8 .. 12 .. 24
.. 1 ... 1 ... 1 ... 2 ... 2 ... 4 .. 12
..... 0 ... 0 ... 1 ... 0 ... 2 ... 8
........ 0 ... 1 .. -1 ... 2 ... 6
........... 1 .. -2 ... 3 ... 4
............. -3 ... 5 ... 1
................. 8 .. -4
.................. -12.
		

Crossrefs

Programs

  • Magma
    [(-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^ 3 + 22561*n^2 - 7302*n + 2520)/2520: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    Table[(-6n^7+154n^6-1533n^5+7525n^4-18879n^3+22561n^2-7302n+2520)/2520,{n,0,40}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,2,3,4,6,8,12,24},40] (* Harvey P. Dale, Jul 15 2012 *)
  • PARI
    a(n)=(-6*n^7+154*n^6-1533*n^5+7525*n^4-18879*n^3+22561*n^2-7302*n+2520)/2520 \\ Charles R Greathouse IV, Sep 24 2015
  • Python
    A161710_list, m = [1], [-12, 80, -223, 333, -281, 127, -23, 1]
    for _ in range(1,10**2):
        for i in range(7):
            m[i+1]+= m[i]
        A161710_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

a(n) = C(n,0) + C(n,1) + C(n,4) - 3*C(n,5) + 8*C(n,6) - 12*C(n,7).
G.f.: (1-6*x+15*x^2-20*x^3+16*x^4-12*x^5+18*x^6-24*x^7)/(1-x)^8. - Bruno Berselli, Jul 17 2011
a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=6, a(5)=8, a(6)=12, a(7)=24, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+ 8*a(n-7)- a(n-8). - Harvey P. Dale, Jul 15 2012
Showing 1-10 of 61 results. Next