cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A008578 Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

1 together with the primes; also called the noncomposite numbers.
Also largest sequence of nonnegative integers with the property that the product of 2 or more elements with different indices is never a square. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001 [Comment corrected by Farideh Firoozbakht, Aug 03 2014]
Numbers k whose largest divisor <= sqrt(k) equals 1. (See also A161344, A161345, A161424.) - Omar E. Pol, Jul 05 2009
Numbers k such that d(k) <= 2. - Juri-Stepan Gerasimov, Oct 17 2009
Also first column of array in A163280. Also first row of array in A163990. - Omar E. Pol, Oct 24 2009
Possible values of A136548(m) in increasing order, where A136548(m) = the largest numbers h such that A000203(h) <= k (k = 1,2,3,...), where A000203(h) = sum of divisors of h. - Jaroslav Krizek, Mar 01 2010
Where record values of A022404 occur: A086332(n)=A022404(a(n)). - Reinhard Zumkeller, Jun 21 2010
Positive integers that have no divisors other than 1 and itself (the old definition of prime numbers). - Omar E. Pol, Aug 10 2012
Conjecture: the sequence contains exactly those k such that sigma(k) > k*BigOmega(k). - Irina Gerasimova, Jun 08 2013
Note on the Gerasimova conjecture: all terms in the sequence obviously satisfy the inequality, because sigma(p) = 1+p and BigOmega(p) = 1 for primes p, so 1+p > p*1. For composites, the (opposite) inequality is heuristically correct at least up to k <= 4400000. The general proof requires to show that BigOmega(k) is an upper limit of the abundancy sigma(k)/k for composite k. This proof is easy for semiprimes k=p1*p2 in general, where sigma(k)=1+p1+p2+p1*p2 and BigOmega(k)=2 and p1, p2 <= 2. - R. J. Mathar, Jun 12 2013
Numbers k such that phi(k) + sigma(k) = 2k. - Farideh Firoozbakht, Aug 03 2014
isA008578(n) <=> k is prime to n for all k in {1,2,...,n-1}. - Peter Luschny, Jun 05 2017
In 1751 Leonhard Euler wrote: "Having so established this sign S to indicate the sum of the divisors of the number in front of which it is placed, it is clear that, if p indicates a prime number, the value of Sp will be 1 + p, except for the case where p = 1, because then we have S1 = 1, and not S1 = 1 + 1. From this we see that we must exclude unity from the sequence of prime numbers, so that unity, being the start of whole numbers, it is neither prime nor composite." - Omar E. Pol, Oct 12 2021
a(1) = 1; for n >= 2, a(n) is the least unused number that is coprime to all previous terms. - Jianing Song, May 28 2022
A number p is preprime if p = a*b ==> a = 1 or b = 1. This sequence lists the preprimes in the commutative monoid IN \ {0}. - Peter Luschny, Aug 26 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 84 at pp. 214-217.
  • G. Chrystal, Algebra: An Elementary Textbook. Chelsea Publishing Company, 7th edition, (1964), chap. III.7, p. 38.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 11.
  • H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035
  • D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
  • D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
  • H. C. Williams and J. O. Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143

Crossrefs

The main entry for this sequence is A000040.
The complement of A002808.
Cf. A000732 (boustrophedon transform).
Cf. A023626 (self-convolution).

Programs

  • GAP
    A008578:=Concatenation([1],Filtered([1..10^5],IsPrime)); # Muniru A Asiru, Sep 07 2017
  • Haskell
    a008578 n = a008578_list !! (n-1)
    a008578_list = 1 : a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    [1] cat [n: n in PrimesUpTo(271)];  // Bruno Berselli, Mar 05 2011
    
  • Maple
    A008578 := n->if n=1 then 1 else ithprime(n-1); fi :
  • Mathematica
    Join[ {1}, Table[ Prime[n], {n, 1, 60} ] ]
    NestList[ NextPrime, 1, 57] (* Robert G. Wilson v, Jul 21 2015 *)
    oldPrimeQ[n_] := AllTrue[Range[n-1], CoprimeQ[#, n]&];
    Select[Range[271], oldPrimeQ] (* Jean-François Alcover, Jun 07 2017, after Peter Luschny *)
  • PARI
    is(n)=isprime(n)||n==1
    
  • Sage
    isA008578 = lambda n: all(gcd(k, n) == 1 for k in (1..n-1))
    print([n for n in (1..271) if isA008578(n)]) # Peter Luschny, Jun 07 2017
    

Formula

a(n) = A000040(n-1).
m is in the sequence iff sigma(m) + phi(m) = A065387(m) = 2m. - Farideh Firoozbakht, Jan 27 2005
a(n) = A158611(n+1) for n >= 1. - Jaroslav Krizek, Jun 19 2009
In the following formulas (based on emails from Jaroslav Krizek and R. J. Mathar), the star denotes a Dirichlet convolution between two sequences, and "This" is A008578.
This = A030014 * A008683. (Dirichlet convolution using offset 1 with A030014)
This = A030013 * A000012. (Dirichlet convolution using offset 1 with A030013)
This = A034773 * A007427. (Dirichlet convolution)
This = A034760 * A023900. (Dirichlet convolution)
This = A034762 * A046692. (Dirichlet convolution)
This * A000012 = A030014. (Dirichlet convolution using offset 1 with A030014)
This * A008683 = A030013. (Dirichlet convolution using offset 1 with A030013)
This * A000005 = A034773. (Dirichlet convolution)
This * A000010 = A034760. (Dirichlet convolution)
This * A000203 = A034762. (Dirichlet convolution)
A002033(a(n))=1. - Juri-Stepan Gerasimov, Sep 27 2009
a(n) = A181363((2*n-1)*2^k), k >= 0. - Reinhard Zumkeller, Oct 16 2010
a(n) = A001747(n)/2. - Omar E. Pol, Jan 30 2012
A060448(a(n)) = 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2012
Sum_{n>=1} x^a(n) = (Sum_{n>=1} (A002815(n)*x^n))*(1-x)^2. - L. Edson Jeffery, Nov 25 2013

A033676 Largest divisor of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 1, 4, 5, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 6, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = sqrt(n) is a new record if and only if n is a square. - Zak Seidov, Jul 17 2009
a(n) = A060775(n) unless n is a square, when a(n) = A033677(n) = sqrt(n) is strictly larger than A060775(n). It would be nice to have an efficient algorithm to calculate these terms when n has a large number of divisors, as for example in A060776, A060777 and related problems such as A182987. - M. F. Hasler, Sep 20 2011
a(n) = 1 when n = 1 or n is prime. - Alonso del Arte, Nov 25 2012
a(n) is the smallest central divisor of n. Column 1 of A207375. - Omar E. Pol, Feb 26 2019
a(n^4+n^2+1) = n^2-n+1: suppose that n^2-n+k divides n^4+n^2+1 = (n^2-n+k)*(n^2+n-k+2) - (k-1)*(2*n+1-k) for 2 <= k <= 2*n, then (k-1)*(2*n+1-k) >= n^2-n+k, or n^2 - (2*k-1)*n + (k^2-k+1) = (n-k+1/2)^2 + 3/4 < 0, which is impossible. Hence the next smallest divisor of n^4+n^2+1 than n^2-n+1 is at least n^2-n+(2*n+1) = n^2+n+1 > sqrt(n^4+n^2+1). - Jianing Song, Oct 23 2022

References

  • G. Tenenbaum, pp. 268 ff, in: R. L. Graham et al., eds., Mathematics of Paul Erdős I.

Crossrefs

Cf. A033677 (n/a(n)), A000196 (sqrt), A027750 (list of divisors), A056737 (n/a(n) - a(n)), A219695 (half of this for odd numbers), A207375 (list the central divisor(s)).
The strictly inferior case is A060775. Cf. also A140271.
Indices of given values: A008578 (1 and the prime numbers: a(n) = 1), A161344 (a(n) = 2), A161345 (a(n) = 3), A161424 (4), A161835 (5), A162526 (6), A162527 (7), A162528 (8), A162529 (9), A162530 (10), A162531 (11), A162532 (12), A282668 (indices of primes).

Programs

  • Haskell
    a033676 n = last $ takeWhile (<= a000196 n) $ a027750_row n
    -- Reinhard Zumkeller, Jun 04 2012
    
  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; end if; end do: a; end proc: # R. J. Mathar, Aug 09 2009
  • Mathematica
    largestDivisorLEQR[n_Integer] := Module[{dvs = Divisors[n]}, dvs[[Ceiling[Length@dvs/2]]]]; largestDivisorLEQR /@ Range[100] (* Borislav Stanimirov, Mar 28 2010 *)
    Table[Last[Select[Divisors[n],#<=Sqrt[n]&]],{n,100}] (* Harvey P. Dale, Mar 17 2017 *)
  • PARI
    A033676(n) = {local(d);if(n<2,1,d=divisors(n);d[(length(d)+1)\2])} \\ Michael B. Porter, Jan 30 2010
    
  • Python
    from sympy import divisors
    def A033676(n):
        d = divisors(n)
        return d[(len(d)-1)//2]  # Chai Wah Wu, Apr 05 2021

Formula

a(n) = n / A033677(n).
a(n) = A161906(n,A038548(n)). - Reinhard Zumkeller, Mar 08 2013
a(n) = A162348(2n-1). - Daniel Forgues, Sep 29 2014

A006005 The odd prime numbers together with 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

The odd noncomposite numbers. Also odd primes at the beginning of the 20th century. - Omar E. Pol, Mar 19 2008
Indices at which records occur in A002322. - Artur Jasinski, Apr 05 2008
Odd numbers n such that their largest divisor <= sqrt(n) equals 1. (See A161344). - Omar E. Pol, Aug 03 2009
All k for which cos((k-1)!*Pi/k) is negative. - Gerry Martens, Jun 01 2018

Crossrefs

Programs

  • Mathematica
    a = {}; max = 0; Do[w = CarmichaelLambda[k]; If[w > max, AppendTo[a, k]; max = k], {k, 1, 200}]; a (* Artur Jasinski, Apr 05 2008 *)
    Join[{1},Prime[Range[2,60]]] (* Harvey P. Dale, Apr 15 2019 *)
  • PARI
    prime(n)-(n==1) \\ Charles R Greathouse IV, Aug 26 2011

Formula

a(n) = A000040(n) - A000007(n) = A000040(n) - ((-1)^A000040(n)+1)/2. - Juri-Stepan Gerasimov, Oct 25 2009
a(n) = A175524(n) for n <= 30. - Reinhard Zumkeller, Jul 12 2011

A161345 Numbers k whose largest divisor <= sqrt(k) is 3.

Original entry on oeis.org

9, 12, 15, 18, 21, 27, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Define a sieve operation with parameter s that eliminates integers of the form s^2+s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=3 and cannot be eliminated by any sieve s >= 4. - R. J. Mathar, Jun 24 2009
See A161344 for more information. - Omar E. Pol, Jul 05 2009
See also the array in A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009
Union of {12, 18, 27} and all the numbers of the form 3*p, where p is an odd prime. - Amiram Eldar, Apr 17 2024

Crossrefs

Third column of the array in A163280. Also, third row of array in A163990. - Omar E. Pol, Oct 24 2009

Programs

  • Maple
    isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161345 := proc(n) for s from 4 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,3) ; end: for n from 1 to 3000 do if isA161345(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
  • Mathematica
    md3Q[n_]:=Max[Select[Divisors[n],#<=Sqrt[n]&]]==3; Select[Range[800],md3Q] (* Harvey P. Dale, Aug 12 2013 *)

Formula

Numbers k such that A033676(k)=3. - Omar E. Pol, Jul 05 2009

Extensions

Terms beyond a(10) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009

A163280 Square array read by antidiagonals where column k lists the numbers j whose largest divisor <= sqrt(j) is k.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 10, 15, 20, 25, 11, 14, 18, 24, 30, 36, 13, 22, 21, 28, 35, 42, 49, 17, 26, 27, 32, 40, 48, 56, 64, 19, 34, 33, 44, 45, 54, 63, 72, 81, 23, 38, 39, 52, 50, 60, 70, 80, 90, 100, 29, 46, 51, 68, 55, 66, 77, 88, 99, 110, 121, 31, 58, 57, 76, 65, 78, 84, 96, 108, 120, 132, 144
Offset: 1

Views

Author

Omar E. Pol, Aug 07 2009

Keywords

Comments

This sequence is a permutation of the natural numbers A000027. Note that the first column is formed by 1 together with the prime numbers.
Column k contains exactly those numbers j=k*m where m is either a prime >= j or one of the numbers in row k of A163925. - Franklin T. Adams-Watters, Aug 12 2009

Examples

			Array begins:
   1,  4,  9,  16,  25,  36,  49,  64,  81, 100, 121, 144, ...
   2,  6, 12,  20,  30,  42,  56,  72,  90, 110, 132, 156, ...
   3,  8, 15,  24,  35,  48,  63,  80,  99, 120, 143, 168, ...
   5, 10, 18,  28,  40,  54,  70,  88, 108, 130, 154, 180, ...
   7, 14, 21,  32,  45,  60,  77,  96, 117, 140, 165, 192, ...
  11, 22, 27,  44,  50,  66,  84, 104, 126, 150, 176, 204, ...
  13, 26, 33,  52,  55,  78,  91, 112, 135, 160, 187, 216, ...
  17, 34, 39,  68,  65, 102,  98, 128, 153, 170, 198, 228, ...
  19, 38, 51,  76,  75, 114, 105, 136, 162, 190, 209, 264, ...
  23, 46, 57,  92,  85, 138, 119, 152, 171, 200, 220, 276, ...
  29, 58, 69, 116,  95, 174, 133, 184, 189, 230, 231, 348, ...
  31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, ...
  ...
		

Crossrefs

Programs

  • Maple
    A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: # R. J. Mathar, Aug 09 2009
  • Mathematica
    nmax = 12;
    pm = Prime[nmax];
    sDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col]; col[k_] := col[k] = Select[Range[k pm], sDiv[#] == k&];
    T[n_, k_ /; 1 <= k <= Length[col[k]]] := col[k][[n]];
    Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2019 *)

Formula

Column k lists the numbers j such that A033676(j)=k.

Extensions

Edited by R. J. Mathar, Aug 01 2010
Example edited by Jean-François Alcover, Dec 15 2019

A161424 Numbers k whose largest divisor <= sqrt(k) equals 4.

Original entry on oeis.org

16, 20, 24, 28, 32, 44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Define a sieve operation with parameter s that eliminates integers of the form s^2 + s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=4 and cannot be eliminated by any sieve s >= 5. - R. J. Mathar, Jun 24 2009
See A161344 for more information. - Omar E. Pol, Jul 05 2009
See also the array in A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009

Crossrefs

Cf. Fourth column of array in A163280. Also, fourth row of array in A163990. - Omar E. Pol, Oct 24 2009

Programs

  • Maple
    isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161424 := proc(n) for s from 5 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,4) ; end: for n from 1 to 3000 do if isA161424(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
  • Mathematica
    Select[Range[1, 1000], Function[m, Max[Select[Divisors[m], # <= Sqrt[m] &]] == 4]] (* Ashton Baker, Nov 03 2013 *)

Formula

Numbers n such that A033676(n)=4. - Omar E. Pol, Jul 05 2009

Extensions

Terms beyond a(8) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009

A239929 Numbers n with the property that the symmetric representation of sigma(n) has two parts.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 92, 94, 97, 101, 102, 103, 106, 107, 109, 113, 114, 116, 118, 122, 124, 127, 131, 134, 136, 137, 138
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

All odd primes are in the sequence because the parts of the symmetric representation of sigma(prime(i)) are [m, m], where m = (1 + prime(i))/2, for i >= 2.
There are no odd composite numbers in this sequence.
First differs from A173708 at a(13).
Since sigma(p*q) >= 1 + p + q + p*q for odd p and q, the symmetric representation of sigma(p*q) has more parts than the two extremal ones of size (p*q + 1)/2; therefore, the above comments are true. - Hartmut F. W. Hoft, Jul 16 2014
From Hartmut F. W. Hoft, Sep 16 2015: (Start)
The following two statements are equivalent:
(1) The symmetric representation of sigma(n) has two parts, and
(2) n = q * p where q is in A174973, p is prime, and 2 * q < p.
For a proof see the link and also the link in A071561.
This characterization allows for much faster computation of numbers in the sequence - function a239929F[] in the Mathematica section - than computations based on Dyck paths. The function a239929Stalk[] gives rise to the associated irregular triangle whose columns are indexed by A174973 and whose rows are indexed by A065091, the odd primes. (End)
From Hartmut F. W. Hoft, Dec 06 2016: (Start)
For the respective columns of the irregular triangle with fixed m: k = 2^m * p, m >= 1, 2^(m+1) < p and p prime:
(a) each number k is representable as the sum of 2^(m+1) but no fewer consecutive positive integers [since 2^(m+1) < p].
(b) each number k has 2^m as largest divisor <= sqrt(k) [since 2^m < sqrt(k) < p].
(c) each number k is of the form 2^m * p with p prime [by definition].
m = 1: (a) A100484 even semiprimes (except 4 and 6)
(b) A161344 (except 4, 6 and 8)
(c) A001747 (except 2, 4 and 6)
m = 2: (a) A270298
(b) A161424 (except 16, 20, 24, 28 and 32)
(c) A001749 (except 8, 12, 20 and 28)
m = 3: (a) A270301
(b) A162528 (except 64, 72, 80, 88, 96, 104, 112 and 128)
(c) sequence not in OEIS
b(i,j) = A174973(j) * {1,5) mod 6 * A174973(j), for all i,j >= 1; see A091999 for j=2. (End)

Examples

			From _Hartmut F. W. Hoft_, Sep 16 2015: (Start)
a(23) = 52 = 2^2 * 13 = q * p with q = 4 in A174973 and 8 < 13 = p.
a(59) = 136 = 2^3 * 17 = q * p with q = 8 in A174973 and 16 < 17 = p.
The first six columns of the irregular triangle through prime 37:
   1    2    4    6    8   12 ...
  -------------------------------
   3
   5   10
   7   14
  11   22   44
  13   26   52   78
  17   34   68  102  136
  19   38   76  114  152
  23   46   92  138  184
  29   58  116  174  232  348
  31   62  124  186  248  372
  37   74  148  222  296  444
  ...
(End)
		

Crossrefs

Programs

  • Maple
    isA174973 := proc(n)
        option remember;
        local k,dvs;
        dvs := sort(convert(numtheory[divisors](n),list)) ;
        for k from 2 to nops(dvs) do
            if op(k,dvs) > 2*op(k-1,dvs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A174973 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA174973(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    isA239929 := proc(n)
        local i,p,j,a73;
        for i from 1 do
            p := ithprime(i+1) ;
            if p > n then
                return false;
            end if;
            for j from 1 do
                a73 := A174973(j) ;
                if a73 > n then
                    break;
                end if;
                if p > 2*a73 and n = p*a73 then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 200 do
        if isA239929(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Oct 04 2018
  • Mathematica
    (* sequence of numbers k for m <= k <= n having exactly two parts *)
    (* Function a237270[] is defined in A237270 *)
    a239929[m_, n_]:=Select[Range[m, n], Length[a237270[#]]==2&]
    a239929[1, 260] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    (* test for membership in A174973 *)
    a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
    a174973[n_]:=Select[Range[n], a174973Q]
    (* compute numbers satisfying the condition *)
    a239929Stalk[start_, bound_]:=Module[{p=NextPrime[2 start], list={}}, While[start p<=bound, AppendTo[list, start p]; p=NextPrime[p]]; list]
    a239929F[n_]:=Sort[Flatten[Map[a239929Stalk[#, n]&, a174973[n]]]]
    a239929F[138] (* data *)(* Hartmut F. W. Hoft, Sep 16 2015 *)

Formula

Entries b(i, j) in the irregular triangle with rows indexed by i>=1 and columns indexed by j>=1 (alternate indexing of the example):
b(i,j) = A000040(i+1) * A174973(j) where A000040(i+1) > 2 * A174973(j). - Hartmut F. W. Hoft, Dec 06 2016

Extensions

Extended beyond a(56) by Michel Marcus, Apr 07 2014

A161835 Numbers k whose largest divisor <= sqrt(k) is 5.

Original entry on oeis.org

25, 30, 35, 40, 45, 50, 55, 65, 75, 85, 95, 115, 125, 145, 155, 185, 205, 215, 235, 265, 295, 305, 335, 355, 365, 395, 415, 445, 485, 505, 515, 535, 545, 565, 635, 655, 685, 695, 745, 755, 785, 815, 835, 865, 895, 905, 955, 965, 985, 995, 1055, 1115, 1135, 1145, 1165, 1195
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

See A161344 for more information. - Omar E. Pol, Jul 05 2009

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1000], Function[m, Max[Select[Divisors[m], # <= Sqrt[m] &]] == 4]] (* Ashton Baker, Nov 03 2013 *)
  • PARI
    is(n)=divisors(n)[(numdiv(n)+1)\2]==5 \\ - M. F. Hasler, Nov 03 2013

Formula

Numbers k such that A033676(k)=5. - Omar E. Pol, Jul 05 2009

Extensions

Definition and more terms added by R. J. Mathar, Jun 28 2009

A162527 Numbers k whose largest divisor <= sqrt(k) equals 7.

Original entry on oeis.org

49, 56, 63, 70, 77, 84, 91, 98, 105, 119, 133, 147, 161, 175, 203, 217, 245, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 553, 581, 623, 679, 707, 721, 749, 763, 791, 889, 917, 959, 973, 1043, 1057, 1099, 1141, 1169, 1211, 1253, 1267, 1337, 1351
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2000 do if A033676(n) = 7 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld = 7;
    selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];
    Select[Range[ld, 200] ld, selQ] (* Jean-François Alcover, Apr 14 2020 *)
    ld7Q[n_]:=Select[Divisors[n],#<=Sqrt[n]&][[-1]]==7; Select[Range[1400],ld7Q] (* Harvey P. Dale, Jan 13 2023 *)

Formula

Numbers k such that A033676(k)=7.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A162528 Numbers k whose largest divisor <= sqrt(k) equals 8.

Original entry on oeis.org

64, 72, 80, 88, 96, 104, 112, 128, 136, 152, 184, 232, 248, 296, 328, 344, 376, 424, 472, 488, 536, 568, 584, 632, 664, 712, 776, 808, 824, 856, 872, 904, 1016, 1048, 1096, 1112, 1192, 1208, 1256, 1304, 1336, 1384, 1432, 1448, 1528, 1544, 1576, 1592, 1688
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2000 do if A033676(n) = 8 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld8Q[n_]:=Last[Select[Divisors[n],#<=Sqrt[n]&]]==8; Select[Range[ 2000], ld8Q] (* Harvey P. Dale, Apr 08 2017 *)

Formula

Numbers k such that A033676(k)=8.

Extensions

More terms from R. J. Mathar, Jul 13 2009
Showing 1-10 of 52 results. Next