cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A164000 Main diagonal of array in A163280.

Original entry on oeis.org

1, 6, 15, 28, 45, 66, 91, 128, 162, 200, 231, 372, 325, 406, 495, 656, 561, 954, 703, 1180, 987, 1078, 1035, 1896, 1375, 1534, 1701, 2324, 1653, 3090, 1891, 3104, 2541, 2686, 3045, 5004, 2701, 3382, 3627, 5560, 3321, 6846, 3655, 6028, 6165, 5014, 4371
Offset: 1

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a, d) ; end if; end do: a; end proc: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; end if; end if; end do: end proc: A164000 := proc(n) A163280(n,n) ; end proc: seq(A164000(n),n=1..60) ; # R. J. Mathar, Feb 16 2010
  • Mathematica
    nmax = 50;
    pm = Prime[nmax];
    selDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col];
    col[k_] := col[k] = Select[Range[k pm], selDiv[#] == k&];
    a[n_] := col[n][[n]];
    Array[a, nmax] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    lista(nn) = my(v = apply(f, [1..(2*nn-1)^2]), cols = vector(nn, i, select(x->(x==i), v, 1))); vector(nn, i, cols[i][i]); \\ Michel Marcus, Jan 23 2023

Extensions

Terms from a(13) on by R. J. Mathar, Feb 16 2010

A164004 Zero together with row 4 of the array in A163280.

Original entry on oeis.org

0, 5, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164004 := proc(n) if n = 0 then 0; else A163280(4,n) ; fi; end: seq(A164004(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 5}, Table[n*(n + 3), {n, 2, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 -3*x^2 +5*x -5)/(x-1)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjectures from Colin Barker, Apr 07 2015: (Start)
a(n) = n*(3+n) = A028552(n) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: x*(x^3 - 3*x^2 + 5*x - 5) / (x-1)^3. (End)
E.g.f.: x*(x+4)*exp(x) + x. - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009

A164006 Zero together with row 6 of the array in A163280.

Original entry on oeis.org

0, 11, 22, 27, 44, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Cf. A028557 for n > 4. - R. J. Mathar, Aug 09 2009

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164006 := proc(n) if n = 0 then 0; else A163280(6,n) ; fi; end: seq(A164006(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0,11,22,27}, Table[n*(n + 5), {n, 4, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    concat(0, Vec(x*(8*x^6-21*x^5+23*x^4-18*x^3+6*x^2+11*x-11)/(x-1)^3 + O(x^100))) \\ Colin Barker, Nov 24 2014

Formula

From Colin Barker, Nov 24 2014: (Start)
a(n) = n*(n+5) for n > 4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
G.f.: x*(8*x^6 - 21*x^5 + 23*x^4 - 18*x^3 + 6*x^2 + 11*x - 11) / (x-1)^3. (End)
E.g.f.: (x/2)*(10 + 8*x + x^2 + 2*(x + 6)*exp(x)). - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009

A164007 Zero together with row 7 of the array in A163280.

Original entry on oeis.org

0, 13, 26, 33, 52, 55, 78, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392, 2491, 2592, 2695
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164007 := proc(n) if n = 0 then 0; else A163280(7,n) ; fi; end: seq(A164007(n),n=0..80) ;  # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 13, 26, 33, 52, 55, 78}, Table[n*(n + 6), {n, 7, 50}]] (* G. C. Greubel, Aug 28 2017 *)
    LinearRecurrence[{3,-3,1},{0,13,26,33,52,55,78,91,112,135},50] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

From G. C. Greubel, Aug 28 2017: (Start)
a(n) = n*(n+6), n >= 7.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 7.
G.f.: x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3.
E.g.f.: (7*x + x^2)*exp(x) + 6*x +5*x^2 + x^3 + x^4/2 + x^6/120. (End)

Extensions

Extended by R. J. Mathar, Aug 09 2009

A164008 Zero together with row 8 of the array in A163280.

Original entry on oeis.org

0, 17, 34, 39, 68, 65, 102, 98, 128, 153, 170, 198, 228, 260, 294, 330, 368, 408, 450, 494, 540, 588, 638, 690, 744, 800, 858, 918, 980, 1044, 1110, 1178, 1248, 1320, 1394, 1470, 1548, 1628, 1710, 1794, 1880, 1968, 2058, 2150, 2244, 2340, 2438, 2538, 2640
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: printf("0,") ; for n from 1 to 70 do printf("%d,",A163280(8,n)) ; end do ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,17,34,39,68,65,102,98,128,153,170,198,228},50] (* Harvey P. Dale, Dec 25 2022 *)

Formula

Conjecture: a(n) = A028563(n), n > 9. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond 228 from R. J. Mathar, Feb 05 2010

A164009 Zero together with row 9 of the array in A163280.

Original entry on oeis.org

0, 19, 38, 51, 76, 75, 114, 105, 136, 162, 190, 209, 264, 273, 308, 345, 384, 425, 468, 513, 560, 609, 660, 713, 768, 825, 884, 945, 1008, 1073, 1140, 1209, 1280, 1353, 1428, 1505, 1584, 1665, 1748, 1833, 1920, 2009, 2100, 2193, 2288, 2385, 2484, 2585, 2688
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end proc:
    A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then return T ; end if; end if; end do: end proc:
    printf("0, ") ; for n from 1 to 90 do printf("%d, ", A163280(9, n)) ; end do ; # R. J. Mathar, Jul 31 2010

Formula

Conjecture: a(n) = A028566(n), n > 12. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond a(12) from R. J. Mathar, Jul 31 2010

A164010 Zero together with row 10 of the array in A163280.

Original entry on oeis.org

0, 23, 46, 57, 92, 85, 138, 119, 152, 171, 200, 220, 276, 286, 322, 375, 416, 442, 486, 532, 580, 630, 682, 736, 792, 850, 910, 972, 1036, 1102, 1170, 1240, 1312, 1386, 1462, 1540, 1620, 1702, 1786, 1872, 1960, 2050, 2142, 2236, 2332, 2430, 2530, 2632, 2736
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Formula

Conjecture: a(n) = A028569(n), n > 16. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond a(12) from R. J. Mathar, Feb 06 2010

A164011 Zero together with row 11 of the array in A163280.

Original entry on oeis.org

0, 29, 58, 69, 116, 95, 174, 133, 184, 189, 230, 231, 348, 299, 350, 390, 448, 459, 522, 551, 620, 651, 704, 759, 816, 875, 936, 999, 1064, 1131, 1200, 1271, 1344, 1419, 1496, 1575, 1656, 1739, 1824, 1911, 2000, 2091, 2184, 2279, 2376, 2475, 2576, 2679, 2784
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: printf("0,") ; for n from 1 to 70 do printf("%d,",A163280(11,n)) ; end do ; # R. J. Mathar, Feb 05 2010

Formula

Conjecture: a(n) = A098603(n), n > 20. [R. J. Mathar, Jul 31 2010]

Extensions

Extended by R. J. Mathar, Feb 05 2010

A164005 Zero together with row 5 of the array in A163280.

Original entry on oeis.org

0, 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164005 := proc(n) if n = 0 then 0; else A163280(5,n) ; fi; end: seq(A164005(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 7, 14}, Table[n*(n + 4), {n, 3, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjecture: a(n) = A100451(n+2). (See A163280.)
From G. C. Greubel, Aug 28 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.
a(n) = n*(n+4), n >= 3.
G.f.: x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3.
E.g.f.: x*(x+5)*exp(x) + 2*x + x^2. (End)

Extensions

Extended by R. J. Mathar, Aug 09 2009

A164012 Zero together with row 12 of the array in A163280.

Original entry on oeis.org

0, 31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, 312, 364, 405, 464, 476, 558, 570, 640, 693, 726, 782, 888, 925, 962, 1026, 1092, 1160, 1230, 1302, 1376, 1452, 1530, 1610, 1692, 1776, 1862, 1950, 2040, 2132, 2226, 2322, 2420, 2520, 2622, 2726
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Formula

Conjecture: a(n) = A119412(n), n > 36. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond a(12) from R. J. Mathar, Jul 31 2010
Showing 1-10 of 29 results. Next