cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163280 Square array read by antidiagonals where column k lists the numbers j whose largest divisor <= sqrt(j) is k.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 10, 15, 20, 25, 11, 14, 18, 24, 30, 36, 13, 22, 21, 28, 35, 42, 49, 17, 26, 27, 32, 40, 48, 56, 64, 19, 34, 33, 44, 45, 54, 63, 72, 81, 23, 38, 39, 52, 50, 60, 70, 80, 90, 100, 29, 46, 51, 68, 55, 66, 77, 88, 99, 110, 121, 31, 58, 57, 76, 65, 78, 84, 96, 108, 120, 132, 144
Offset: 1

Views

Author

Omar E. Pol, Aug 07 2009

Keywords

Comments

This sequence is a permutation of the natural numbers A000027. Note that the first column is formed by 1 together with the prime numbers.
Column k contains exactly those numbers j=k*m where m is either a prime >= j or one of the numbers in row k of A163925. - Franklin T. Adams-Watters, Aug 12 2009

Examples

			Array begins:
   1,  4,  9,  16,  25,  36,  49,  64,  81, 100, 121, 144, ...
   2,  6, 12,  20,  30,  42,  56,  72,  90, 110, 132, 156, ...
   3,  8, 15,  24,  35,  48,  63,  80,  99, 120, 143, 168, ...
   5, 10, 18,  28,  40,  54,  70,  88, 108, 130, 154, 180, ...
   7, 14, 21,  32,  45,  60,  77,  96, 117, 140, 165, 192, ...
  11, 22, 27,  44,  50,  66,  84, 104, 126, 150, 176, 204, ...
  13, 26, 33,  52,  55,  78,  91, 112, 135, 160, 187, 216, ...
  17, 34, 39,  68,  65, 102,  98, 128, 153, 170, 198, 228, ...
  19, 38, 51,  76,  75, 114, 105, 136, 162, 190, 209, 264, ...
  23, 46, 57,  92,  85, 138, 119, 152, 171, 200, 220, 276, ...
  29, 58, 69, 116,  95, 174, 133, 184, 189, 230, 231, 348, ...
  31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, ...
  ...
		

Crossrefs

Programs

  • Maple
    A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: # R. J. Mathar, Aug 09 2009
  • Mathematica
    nmax = 12;
    pm = Prime[nmax];
    sDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col]; col[k_] := col[k] = Select[Range[k pm], sDiv[#] == k&];
    T[n_, k_ /; 1 <= k <= Length[col[k]]] := col[k][[n]];
    Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2019 *)

Formula

Column k lists the numbers j such that A033676(j)=k.

Extensions

Edited by R. J. Mathar, Aug 01 2010
Example edited by Jean-François Alcover, Dec 15 2019

A163990 Square array read by antidiagonals where the row n lists the numbers k such that their largest divisor <= sqrt(k) equals n.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 25, 20, 15, 10, 7, 36, 30, 24, 18, 14, 11, 49, 42, 35, 28, 21, 22, 13, 64, 56, 48, 40, 32, 27, 26, 17, 81, 72, 63, 54, 45, 44, 33, 34, 19, 100, 90, 80, 70, 60, 50, 52, 39, 38, 23, 121, 110, 99, 88, 77, 66, 55, 68, 51, 46, 29, 144, 132, 120, 108
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2009

Keywords

Comments

This sequence is a permutation of the natural numbers.
Note that the first row is formed by 1 together the prime numbers and the first column are the squares of the natural numbers.
For more information see A163280, the main entry for this sequence. (See also A161344).

Examples

			Array begins:
1, 2, 3, 5, 7, 11,
4, 6, 8, 10, 14,
9, 12, 15, 18,
16, 20, 24,
25, 30,
36,
See also the array in A163280.
		

Crossrefs

Formula

Row n lists the numbers k such that A033676(k)=n.

A164007 Zero together with row 7 of the array in A163280.

Original entry on oeis.org

0, 13, 26, 33, 52, 55, 78, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392, 2491, 2592, 2695
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164007 := proc(n) if n = 0 then 0; else A163280(7,n) ; fi; end: seq(A164007(n),n=0..80) ;  # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 13, 26, 33, 52, 55, 78}, Table[n*(n + 6), {n, 7, 50}]] (* G. C. Greubel, Aug 28 2017 *)
    LinearRecurrence[{3,-3,1},{0,13,26,33,52,55,78,91,112,135},50] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

From G. C. Greubel, Aug 28 2017: (Start)
a(n) = n*(n+6), n >= 7.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 7.
G.f.: x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3.
E.g.f.: (7*x + x^2)*exp(x) + 6*x +5*x^2 + x^3 + x^4/2 + x^6/120. (End)

Extensions

Extended by R. J. Mathar, Aug 09 2009

A164005 Zero together with row 5 of the array in A163280.

Original entry on oeis.org

0, 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164005 := proc(n) if n = 0 then 0; else A163280(5,n) ; fi; end: seq(A164005(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 7, 14}, Table[n*(n + 4), {n, 3, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjecture: a(n) = A100451(n+2). (See A163280.)
From G. C. Greubel, Aug 28 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.
a(n) = n*(n+4), n >= 3.
G.f.: x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3.
E.g.f.: x*(x+5)*exp(x) + 2*x + x^2. (End)

Extensions

Extended by R. J. Mathar, Aug 09 2009
Showing 1-4 of 4 results.