cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 93 results. Next

A281859 Curious identities based on the Armstrong number 407 = A005188(13).

Original entry on oeis.org

407, 340067, 334000667, 333400006667, 333340000066667, 333334000000666667, 333333400000006666667, 333333340000000066666667, 333333334000000000666666667, 333333333400000000006666666667, 333333333340000000000066666666667, 333333333334000000000000666666666667
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A093137.

Examples

			Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ...
		

Programs

  • Mathematica
    Table[FromDigits@ Join[ReplacePart[ConstantArray[3, n], -1 -> 4], ConstantArray[0, n], ReplacePart[ConstantArray[6, n], -1 -> 7]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{1111,-112110,1111000,-1000000},{407,340067,334000667,333400006667},20] (* Harvey P. Dale, May 10 2018 *)
  • PARI
    Vec(x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

From Colin Barker, Feb 08 2017: (Start)
G.f.: x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (1 + 2^(1+n)*5^n + 2^(1+2*n)*25^n + 1000^n) / 3.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)

A281860 Curious identities based on the Armstrong number 371 = A005188(12).

Original entry on oeis.org

371, 336701, 333667001, 333366670001, 333336666700001, 333333666667000001, 333333366666670000001, 333333336666666700000001, 333333333666666667000000001, 333333333366666666670000000001, 333333333336666666666700000000001, 333333333333666666666667000000000001
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275.

Examples

			n=1: 371 = 3^3 + 7^3 + 1^3;
n=2: 336701 = 33^3 + 67^3 + (01)^3;
n=3: 333667001 = 333^3 + 667^3 + (001)^3.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1111,-112110,1111000,-1000000},{371,336701,333667001,333366670001},20] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    Vec(x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 09 2017

Formula

a(n) = A002277(n) * 10^(2*n) + A067275(n+1) * 10^n + 0(n-1)1, where 0(n-1)1 stands for n-1 0's followed by a 1, for n >= 1.
a(n) = A002277(n)^3 + A067275(n+1)^3 + (0(n-1)1)^3.
From Colin Barker, Feb 09 2017: (Start)
G.f.: x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4.
a(n) = (3 + 10^n + 100^n + 1000^n)/3. (End)

A161752 Numbers equal to the sum of a power of their digits where that power is not equal to the length of the number (i.e., A023052 excluding A005188).

Original entry on oeis.org

4150, 4151, 194979, 14459929, 564240140138, 233411150132317, 114735624485461118832514, 832662335985815242605070, 832662335985815242605071, 7584178683470015004720746
Offset: 1

Views

Author

Hans Havermann, Jun 18 2009

Keywords

Examples

			4150 = 4^5 + 1^5 + 5^5 + 0^5 and the exponent 5 is not equal to the length of the number (4).
		

Crossrefs

A072897 Least n-th order digital invariant which is not an Armstrong number (A005188), or 0 if no such term exists.

Original entry on oeis.org

136, 2178, 58618, 63804, 2755907, 0, 144839908, 304162700, 4370652168, 0, 0, 0, 0, 0, 21914086555935085, 187864919457180831, 0, 13397885590701080090, 0, 0, 0, 19095442247273220984552, 1553298727699254868304830, 1539325689516673750004702, 242402817739393059296681797
Offset: 3

Views

Author

Robert G. Wilson v, Aug 09 2002

Keywords

Comments

An n-th order digital invariant is a number such that the sum of the n-th powers of the digits of n equals some number k and the sum of the n-th powers of the digits of k equals n. An Armstrong number is where n = k.

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124, 155.

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[ !(Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[k]^n]]^n] == k && Apply[Plus, IntegerDigits[k]^n] != k), k++ ]; Print[k], {n, 3, 7}]

Extensions

a(8)-a(27) from Tim Johannes Ohrtmann, Aug 27 2015

A001694 Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form a^2*b^3, a >= 1, b >= 1.
In other words, if the prime factorization of n is Product_k p_k^e_k then all e_k are greater than 1.
Numbers n such that Sum_{d|n} phi(d)*phi(n/d)*mu(d) > 0; places of nonzero A300717. - Benoit Cloitre, Nov 30 2002
This sequence is closed under multiplication. The primitive elements are A168363. - Franklin T. Adams-Watters, May 30 2011
Complement of A052485. - Reinhard Zumkeller, Sep 16 2011
The number of terms less than or equal to 10^k beginning with k = 0: 1, 4, 14, 54, 185, 619, 2027, 6553, 21044, ...: A118896. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 3136, 253472, 23002083, 2200079025, 215523459072, 21348015504200, 2125390162618116, ... . - Robert G. Wilson v, Aug 15 2014
a(m) mod prime(n) > 0 for m < A258599(n); a(A258599(n)) = A001248(n) = prime(n)^2. - Reinhard Zumkeller, Jun 06 2015
From Des MacHale, Mar 07 2021: (Start)
A number m is powerful if and only if |R/Z(R)| = m, for some finite non-commutative ring R.
A number m is powerful if and only if |G/Z(G)| = m, for some finite nilpotent class two group G (Reference Aine Nishe). (End)
Numbers n such that Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)) > 0. - Richard L. Ollerton, May 09 2021

Examples

			1 is a term because for every prime p that divides 1, p^2 also divides 1.
2 is not a term since 2 divides 2 but 2^2 does not.
4 is a term because 2 is the only prime that divides 4 and 2^2 does divide 4. - _N. J. A. Sloane_, Jan 16 2022
		

References

  • G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer. 37 (1983), 277-307.
  • Aleksandar Ivić, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
  • Richard A. Mollin, Quadratics, CRC Press, 1996, Section 1.6.
  • Aine NiShe, Commutativity and Generalisations in Finite Groups, Ph.D. Thesis, University College Cork, 2000.
  • Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 9.1 Potente Zahlen, pp. 241-247.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 54, exercise 10 (in the third edition 2015, p. 63, exercise 70).

Crossrefs

Disjoint union of A062503 and A320966.
Cf. A007532 (Powerful numbers, definition (2)), A005934, A005188, A003321, A014576, A023052 (Powerful numbers, definition (3)), A046074, A013929, A076871, A258599, A001248, A112526, A168363, A224866, A261883, A300717.
Cf. A052485 (complement), A076446 (first differences), A376361, A376362.

Programs

  • Haskell
    a001694 n = a001694_list !! (n-1)
    a001694_list = filter ((== 1) . a112526) [1..]
    -- Reinhard Zumkeller, Nov 30 2012
    
  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A001694 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA001694(a) then return a; end if; end do; end if; end proc:
    seq(A001694(n),n=1..20) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    Join[{1}, Select[ Range@ 1250, Min@ FactorInteger[#][[All, 2]] > 1 &]]
    (* Harvey P. Dale, Sep 18 2011; modified by Robert G. Wilson v, Aug 11 2014 *)
    max = 10^3; Union@ Flatten@ Table[a^2*b^3, {b, max^(1/3)}, {a, Sqrt[max/b^3]}] (* Robert G. Wilson v, Aug 11 2014 *)
    nextPowerfulNumber[n_] := Block[{r = Range[ Floor[1 + n^(1/3)]]^3}, Min@ Select[ Sort[ r*Floor[1 + Sqrt[n/r]]^2], # > n &]]; NestList[ nextPowerfulNumber, 1, 55] (* Robert G. Wilson v, Aug 16 2014 *)
  • PARI
    isA001694(n)=n=factor(n)[,2];for(i=1,#n,if(n[i]==1,return(0)));1 \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    list(lim,mn=2)=my(v=List(),t); for(m=1,sqrtnint(lim\1,3), t=m^3; for(n=1,sqrtint(lim\t), listput(v,t*n^2))); Set(v) \\ Charles R Greathouse IV, Jul 31 2011; edited Sep 22 2015
    
  • PARI
    is=ispowerful \\ Charles R Greathouse IV, Nov 13 2012
    
  • Python
    from sympy import factorint
    A001694 = [1]+[n for n in range(2,10**6) if min(factorint(n).values()) > 1]
    # Chai Wah Wu, Aug 14 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A001694(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
    
  • Sage
    sloane.A001694.list(54) # Peter Luschny, Feb 08 2015

Formula

A112526(a(n)) = 1. - Reinhard Zumkeller, Sep 16 2011
Bateman & Grosswald prove that there are zeta(3/2)/zeta(3) x^{1/2} + zeta(2/3)/zeta(2) x^{1/3} + O(x^{1/6}) terms up to x; see section 5 for a more precise error term. - Charles R Greathouse IV, Nov 19 2012
a(n) = A224866(n) - 1. - Reinhard Zumkeller, Jul 23 2013
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6). - Ivan Neretin, Aug 30 2015
Sum_{n>=1} 1/a(n)^s = zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1/2 (Golomb, 1970). - Amiram Eldar, Oct 02 2022

Extensions

More terms from Henry Bottomley, Mar 16 2000
Definition expanded by Jonathan Sondow, Jan 03 2016

A002277 a(n) = 3*(10^n - 1)/9.

Original entry on oeis.org

0, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333, 3333333333, 33333333333, 333333333333, 3333333333333, 33333333333333, 333333333333333, 3333333333333333, 33333333333333333, 333333333333333333, 3333333333333333333, 33333333333333333333, 333333333333333333333
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence (for n >= 1) appears in n-families satisfying so-called curious cubic identities based on the Armstrong numbers 153, 370 and 371, A005188(10) - A005188(12).
153 also involves A246057(n-1) and A093143(n). See a comment in A246057 with the van Poorten et al. reference, and A281857.
370 and 371 also involve A067275(n+1). See the comment there, and A281858 and A281860. (End)

Examples

			From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities (see a comment above):
1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
3^3 + 7^3 + 0^3 = 370; 336700 = 33^3 + 67^3 + (00)^3 = 336700,  333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ... (End)
		

Crossrefs

Programs

Formula

a(n) = 3*A002275(n).
a(n) = A178631(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 3*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=3. (End)
G.f.: 3*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
Sum_{n>=1} 1/a(n) = A135702. - Amiram Eldar, Nov 13 2020
E.g.f.: exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246057(n) - 1)/5.
a(n) = A010785(A017197(n-1)) for n >= 1. (End)

A023052 Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
Offset: 1

Views

Author

Keywords

Comments

The old name was "Powerful numbers, definition (3)". Cf. A001694, A007532. - N. J. A. Sloane, Jan 16 2022.
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
Superset of A005188 (Plusperfect, narcissistic or Armstrong numbers: s=k), A046197 (s=3), A052455 (s=4), A052464 (s=5), A124068 (s=6, 7), A124069 (s=8). - R. J. Mathar, Jun 15 2009, Jun 22 2009

Examples

			153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
		

Crossrefs

Cf. A001694 (powerful numbers: p|n => p^2|n), A005934 (highly powerful numbers).
Cf. A005188 (here the power must be equal to the number of digits).
In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9).

Programs

  • Mathematica
    Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
  • PARI
    is(n)=if(n<10, return(1)); my(d=digits(n),m=vecmax(d)); if(m<2, return(0)); for(k=3,logint(n,m), if(sum(i=1,#d,d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    select( is_A023052(n,b=10)={nn|| return(t==n))}, [0..10^5]) \\  M. F. Hasler, Nov 21 2019

Extensions

Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019

A003321 Smallest n-th order perfect digital invariant or PDI: smallest number > 1 equal to sum of n-th powers of its digits, or 0 if no such number exists.

Original entry on oeis.org

2, 0, 153, 1634, 4150, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 564240140138, 28116440335967, 0, 4338281769391370, 233411150132317, 0, 1517841543307505039, 63105425988599693916
Offset: 1

Views

Author

Keywords

Comments

Except for the initial term, this is the third column of A252648. - M. F. Hasler, Feb 16 2015
a(n) = 0 if n>1 and in A262094. - Dmitry Kamenetsky, Jun 05 2020

Examples

			1^3 + 5^3 + 3^3 = 153.
1*0^17 + 5*1^17 + 2*2^17 + 4*3^17 + 1*4^17 + 1*5^17 + 1*7^17 = 233411150132317.
		

References

  • M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
  • J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons Ltd. 1966, p. 164.
  • J. S. Madachy, Madachy's Mathematical Recreations, Dover, p. 164.
  • C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

In other bases: A033835 (base 3), A033836 (base 4), A033837 (base 5), A033838 (base 6), A033839 (base 7), A033840 (base 8), A033841 (base 9).

Programs

  • PARI
    a(n)=m=1;while(m*9^n>=10^m,m++);for(k=2,10^m,d=digits(k);s=sum(i=1,#d,d[i]^n);if(s==k,return(k)));0
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Dec 19 2014

Extensions

Additional comments from Lekraj Beedassy, May 23 2001
Extended and cross-references edited by Joseph Myers, Jun 28 2009

A005934 Highly powerful numbers: numbers with record value of the product of the exponents in prime factorization (A005361).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1296, 1728, 2592, 3456, 5184, 7776, 10368, 15552, 20736, 31104, 41472, 62208, 86400, 108000, 129600, 194400, 216000, 259200, 324000, 432000, 518400, 648000, 972000, 1296000, 1944000, 2592000
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a = {1}; b = {1}; f[n_] := Times @@ Last /@ FactorInteger[n]; Do[If[f@ n > Max[b], And[AppendTo[b, f@ n], AppendTo[a, n]]], {n, 1000000}]; a (* Michael De Vlieger, Aug 28 2015 *)
    With[{s = Array[Times @@ FactorInteger[#][[All, -1]] &, 3*10^6]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Oct 15 2017 *)
    DeleteDuplicates[Table[{n,Times@@FactorInteger[n][[All,2]]},{n,26*10^5}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    {prdex(n)=local(s,fac); s=1; fac=factor(n); for(k=1,matsize(fac)[1],s=s*fac[k,2]); return(s)} {hp(m)=local(rec); rec=0; for(n=1,m,if(prdex(n)>rec,rec=prdex(n); print1(n",")))}

Formula

For n = Product p_i^e_i, let b(n) = Product e_i; then n is highly powerful if b(n) sets a new record.

Extensions

Hardy and Subbarao give an extensive table.
Corrected and extended by Jason Earls, Jul 10 2003

A046197 Fixed points for operation of repeatedly replacing a number with the sum of the cubes of its digits.

Original entry on oeis.org

0, 1, 153, 370, 371, 407
Offset: 1

Views

Author

Richard C. Schroeppel

Keywords

Comments

Suppose n has d digits; then the sum of the cubes of its digits is <= 729d and n >= 10^(d-1). So d <= 5. It is now easy to check that the numbers shown are the only solutions. [Corrected by M. F. Hasler, Apr 12 2015]
This is row n=3 of A252648. - M. F. Hasler, Apr 12 2015

Examples

			1^3 + 5^3 + 3^3 = 153. 3^3+7^3 +0^3 = 370.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 153, p. 50, Ellipses, Paris 2008.
  • G. H. Hardy, A Mathematician's Apology, Cambridge, 1967.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 60-62.
  • J. Shallit, Number theory and formal languages, in Emerging applications of number theory (Minneapolis, MN, 1996), 547-570, IMA Vol. Math. Appl., 109, Springer, New York, 1999.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 140.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,407],Total[IntegerDigits[#]^3]==# &] (* Stefano Spezia, Sep 08 2024 *)
  • PARI
    for(n=0,10^5,A055012(n)==n&&print1(n",")) \\ M. F. Hasler, Apr 12 2015

Formula

A055012(a(n))=a(n); A165331(a(n))=0; subset of A031179. - Reinhard Zumkeller, Sep 17 2009
Showing 1-10 of 93 results. Next