A286708 Powerful numbers (A001694) that are not prime powers (A000961).
36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 900, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500, 2592, 2601, 2700, 2704, 2744
Offset: 1
Keywords
Examples
------------------------------- | n | a(n) | prime | | | | factorization | |------------------------------ | 1 | 36 | {{2, 2}, {3, 2}} | | 2 | 72 | {{2, 3}, {3, 2}} | | 3 | 100 | {{2, 2}, {5, 2}} | | 4 | 108 | {{2, 2}, {3, 3}} | | 5 | 144 | {{2, 4}, {3, 2}} | | 6 | 196 | {{2, 2}, {7, 2}} | | 7 | 200 | {{2, 3}, {5, 2}} | | 8 | 216 | {{2, 3}, {3, 3}} | | 9 | 225 | {{3, 2}, {5, 2}} | ------------------------------- a(n) = p_1^e_1*p_2^e_2*... : {{p_1, e_1}, {p_2, e_2}, ...}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 5997 terms from Robert Israel)
- Eric Weisstein's World of Mathematics, Prime Power.
- Eric Weisstein's World of Mathematics, Powerful Number.
- Index entries for sequences related to powerful numbers
Programs
-
Maple
N:= 10000: S:= {1}: P:= {1}: p:= 1: do p:= nextprime(p); if p^2 > N then break fi; S:= map(s -> (s, seq(s*p^k, k = 2 .. floor(log[p](N/s)))), S); P:= P union {seq(p^k, k=2..floor(log[p](N)))}: od: sort(convert(S minus P, list)); # Robert Israel, May 14 2017
-
Mathematica
Select[Range@2750, Min@FactorInteger[#][[All, 2]] > 1 && ! PrimePowerQ[#] &] (* Second program *) nn = 2^25; Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], ! PrimePowerQ[#] &] (* Michael De Vlieger, Jun 22 2022 *)
-
Python
from sympy import primefactors, factorint print([n for n in range(4,2745) if len(primefactors(n)) > 1 and min(list(factorint(n).values())) > 1]) # Karl-Heinz Hofmann, Feb 07 2023
-
Python
from math import isqrt from sympy import integer_nthroot, primepi, mobius def A286708(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x,3)[0])-l return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Formula
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{p prime} 1/(p*(p-1)) - 1 = A082695 - A136141 - 1 = 0.17043976777096407719... - Amiram Eldar, Feb 12 2021
Comments