cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001694 Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form a^2*b^3, a >= 1, b >= 1.
In other words, if the prime factorization of n is Product_k p_k^e_k then all e_k are greater than 1.
Numbers n such that Sum_{d|n} phi(d)*phi(n/d)*mu(d) > 0; places of nonzero A300717. - Benoit Cloitre, Nov 30 2002
This sequence is closed under multiplication. The primitive elements are A168363. - Franklin T. Adams-Watters, May 30 2011
Complement of A052485. - Reinhard Zumkeller, Sep 16 2011
The number of terms less than or equal to 10^k beginning with k = 0: 1, 4, 14, 54, 185, 619, 2027, 6553, 21044, ...: A118896. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 3136, 253472, 23002083, 2200079025, 215523459072, 21348015504200, 2125390162618116, ... . - Robert G. Wilson v, Aug 15 2014
a(m) mod prime(n) > 0 for m < A258599(n); a(A258599(n)) = A001248(n) = prime(n)^2. - Reinhard Zumkeller, Jun 06 2015
From Des MacHale, Mar 07 2021: (Start)
A number m is powerful if and only if |R/Z(R)| = m, for some finite non-commutative ring R.
A number m is powerful if and only if |G/Z(G)| = m, for some finite nilpotent class two group G (Reference Aine Nishe). (End)
Numbers n such that Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)) > 0. - Richard L. Ollerton, May 09 2021

Examples

			1 is a term because for every prime p that divides 1, p^2 also divides 1.
2 is not a term since 2 divides 2 but 2^2 does not.
4 is a term because 2 is the only prime that divides 4 and 2^2 does divide 4. - _N. J. A. Sloane_, Jan 16 2022
		

References

  • G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer. 37 (1983), 277-307.
  • Aleksandar Ivić, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
  • Richard A. Mollin, Quadratics, CRC Press, 1996, Section 1.6.
  • Aine NiShe, Commutativity and Generalisations in Finite Groups, Ph.D. Thesis, University College Cork, 2000.
  • Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 9.1 Potente Zahlen, pp. 241-247.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 54, exercise 10 (in the third edition 2015, p. 63, exercise 70).

Crossrefs

Disjoint union of A062503 and A320966.
Cf. A007532 (Powerful numbers, definition (2)), A005934, A005188, A003321, A014576, A023052 (Powerful numbers, definition (3)), A046074, A013929, A076871, A258599, A001248, A112526, A168363, A224866, A261883, A300717.
Cf. A052485 (complement), A076446 (first differences), A376361, A376362.

Programs

  • Haskell
    a001694 n = a001694_list !! (n-1)
    a001694_list = filter ((== 1) . a112526) [1..]
    -- Reinhard Zumkeller, Nov 30 2012
    
  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A001694 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA001694(a) then return a; end if; end do; end if; end proc:
    seq(A001694(n),n=1..20) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    Join[{1}, Select[ Range@ 1250, Min@ FactorInteger[#][[All, 2]] > 1 &]]
    (* Harvey P. Dale, Sep 18 2011; modified by Robert G. Wilson v, Aug 11 2014 *)
    max = 10^3; Union@ Flatten@ Table[a^2*b^3, {b, max^(1/3)}, {a, Sqrt[max/b^3]}] (* Robert G. Wilson v, Aug 11 2014 *)
    nextPowerfulNumber[n_] := Block[{r = Range[ Floor[1 + n^(1/3)]]^3}, Min@ Select[ Sort[ r*Floor[1 + Sqrt[n/r]]^2], # > n &]]; NestList[ nextPowerfulNumber, 1, 55] (* Robert G. Wilson v, Aug 16 2014 *)
  • PARI
    isA001694(n)=n=factor(n)[,2];for(i=1,#n,if(n[i]==1,return(0)));1 \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    list(lim,mn=2)=my(v=List(),t); for(m=1,sqrtnint(lim\1,3), t=m^3; for(n=1,sqrtint(lim\t), listput(v,t*n^2))); Set(v) \\ Charles R Greathouse IV, Jul 31 2011; edited Sep 22 2015
    
  • PARI
    is=ispowerful \\ Charles R Greathouse IV, Nov 13 2012
    
  • Python
    from sympy import factorint
    A001694 = [1]+[n for n in range(2,10**6) if min(factorint(n).values()) > 1]
    # Chai Wah Wu, Aug 14 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A001694(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
    
  • Sage
    sloane.A001694.list(54) # Peter Luschny, Feb 08 2015

Formula

A112526(a(n)) = 1. - Reinhard Zumkeller, Sep 16 2011
Bateman & Grosswald prove that there are zeta(3/2)/zeta(3) x^{1/2} + zeta(2/3)/zeta(2) x^{1/3} + O(x^{1/6}) terms up to x; see section 5 for a more precise error term. - Charles R Greathouse IV, Nov 19 2012
a(n) = A224866(n) - 1. - Reinhard Zumkeller, Jul 23 2013
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6). - Ivan Neretin, Aug 30 2015
Sum_{n>=1} 1/a(n)^s = zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1/2 (Golomb, 1970). - Amiram Eldar, Oct 02 2022

Extensions

More terms from Henry Bottomley, Mar 16 2000
Definition expanded by Jonathan Sondow, Jan 03 2016

A085253 Numbers having no representation as sum of two powerful numbers (A001694).

Original entry on oeis.org

1, 3, 4, 6, 7, 11, 14, 15, 19, 21, 22, 23, 27, 30, 38, 39, 42, 46, 47, 49, 51, 55, 56, 60, 62, 66, 67, 69, 70, 71, 75, 77, 78, 79, 83, 84, 86, 87, 92, 93, 94, 95, 102, 103, 105, 107, 110, 111, 114, 115, 118, 119, 120, 123, 131, 138, 139, 142, 143, 147, 151, 154
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Comments

Complement of A076871.

Crossrefs

Different from A075434.

Programs

  • Mathematica
    With[{m = 160}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Complement[Range[m], Select[Union[Plus @@@ Tuples[pow, {2}]], # <= m &]]] (* Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) = 0.

A085252 Number of ways to write n as sum of two powerful numbers (A001694).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			a(81) = 2: 81 = 9 + 72 = A001694(4) + A001694(12) = 32 + 49 = A001694(8) + A001694(10).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 120}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}]] (* Amiram Eldar, Jan 30 2023 *)

Formula

a(A085253(n)) = 0.
a(A076871(n)) > 0.
a(A085254(n)) = 1.
a(A085255(n)) > 1.

A085254 Numbers having a unique representation as sum of two powerful numbers (A001694).

Original entry on oeis.org

2, 5, 8, 9, 10, 12, 13, 16, 18, 20, 24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 43, 44, 45, 48, 53, 54, 58, 59, 61, 63, 64, 74, 82, 88, 90, 91, 96, 98, 99, 100, 101, 106, 112, 121, 122, 124, 126, 127, 128, 134, 135, 140, 141, 146, 149, 150, 155, 161, 162, 169, 171
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 180}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Position[BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}], 1] // Flatten] (* Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) = 1.

A085255 Numbers having at least two representations as a sum of two powerful numbers (A001694).

Original entry on oeis.org

17, 33, 36, 40, 41, 50, 52, 57, 65, 68, 72, 73, 76, 80, 81, 85, 89, 97, 104, 108, 109, 113, 116, 117, 125, 129, 130, 132, 133, 136, 137, 144, 145, 148, 152, 153, 157, 160, 164, 170, 172, 177, 180, 185, 189, 193, 197, 200, 201, 204, 205, 208, 209, 216, 221
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 222}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Position[BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}], ?(# > 1 &)] // Flatten] (* _Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) > 1.

A056828 Numbers that are not the sum of at most three powerful (1) numbers.

Original entry on oeis.org

7, 15, 23, 87, 111, 119
Offset: 1

Views

Author

Henry Bottomley, Aug 30 2000

Keywords

Comments

Mollin and Walsh conjectured that there are no further terms.
Heath-Brown proved that the sequence is finite.
No other terms less than 40000000. - Paul.Jobling(AT)WhiteCross.com, May 14 2001

Examples

			Smallest powerful numbers are 1, 4, 8, 9, 16, 25,... so 7, 15 and 23 are not the sum of one, two or three of them.
		

References

  • D. R. Heath-Brown, "Ternary Quadratic Forms and Sums of Three Square-Full Numbers." In Séminaire de Théorie des Nombres, Paris 1986-87 (Ed. C. Goldstein). Boston, MA: Birkhauser, pp. 137-163, 1988.

Crossrefs

A076872 a(n) = number of numbers <= n that are the sum of two squarefull numbers.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 7, 7, 7, 8, 9, 10, 10, 11, 11, 11, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 23, 24, 25, 25, 26, 27, 28, 28, 28, 29, 29, 30, 30, 31, 32, 33, 33, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 40, 40, 41, 41, 41, 41, 42, 43, 44, 44
Offset: 1

Views

Author

N. J. A. Sloane, Nov 25 2002

Keywords

References

  • Aleksandar Ivić, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 439.

Crossrefs

Programs

  • Mathematica
    With[{m = 120}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Accumulate @ BinCounts[Select[Union[Plus @@@ Tuples[pow, {2}]], # <= m &], {1, m, 1}]] (* Amiram Eldar, Feb 12 2023 *)

Extensions

More terms from Vladeta Jovovic, Nov 26 2002

A261883 Decimal expansion of 1 - 2^(-1/3).

Original entry on oeis.org

2, 0, 6, 2, 9, 9, 4, 7, 4, 0, 1, 5, 9, 0, 0, 2, 6, 2, 6, 2, 4, 1, 4, 7, 1, 8, 0, 3, 6, 3, 8, 4, 5, 8, 6, 9, 8, 0, 4, 2, 5, 3, 3, 3, 6, 0, 5, 0, 0, 7, 3, 4, 9, 5, 0, 9, 5, 8, 5, 7, 1, 1, 9, 0, 8, 7, 3
Offset: 0

Views

Author

Keywords

Comments

Blomer shows that there are x/log^k x powerful numbers up to x, where k = 0.20629947... is this constant.

Examples

			0.20629947401590026262414718036384586980425333605007349509585711908739174...
		

Crossrefs

Programs

  • Mathematica
    First@RealDigits[N[1 - 2^(-1/3), 120]] (* Michael De Vlieger, Sep 04 2015 *)
    RealDigits[1-1/Surd[2,3],10,120][[1]] (* Harvey P. Dale, Dec 05 2023 *)
  • PARI
    1 - 2^(-1/3)

A331802 Integers having no representation as sum of two nonsquarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 15, 19, 23
Offset: 1

Views

Author

Bernard Schott, Feb 23 2020

Keywords

Comments

This sequence is finite with 14 terms and 23 is the largest term (see Prime Curios link); a proof can be found in comments of A331801.

Examples

			With the two smallest nonsquarefree numbers 4 and 8, it is not possible to get 1, 2, 3, 4, 5, 6, 7, 9, 10 and 11 as sum of two nonsquarefree numbers.
		

Crossrefs

Cf. A005117 (squarefree), A013929 (nonsquarefree), A331801 (complement).
Cf. A000404 (sum of 2 nonzero squares), A018825 (not the sum of 2 nonzero squares).
Cf. A001694 (squareful), A052485 (not squareful), A076871 (sum of 2 squareful), A085253 (not the sum of 2 squareful).

Programs

  • Mathematica
    max = 25; Complement[Range[max], Union @ Select[Total /@ Tuples[Select[Range[max], !SquareFreeQ[#] &], 2], # <= max &]] (* Amiram Eldar, Feb 24 2020 *)

A143813 Sum of two powerful numbers greater than 1.

Original entry on oeis.org

8, 12, 13, 16, 17, 18, 20, 24, 25, 29, 31, 32, 33, 34, 35, 36, 40, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 58, 59, 61, 63, 64, 65, 68, 72, 73, 74, 76, 80, 81, 85, 88, 89, 90, 91, 96, 97, 98, 99, 100, 104, 106, 108, 109, 112, 113, 116, 117, 121, 124, 125, 127
Offset: 1

Views

Author

Keywords

Comments

A076871 is the primary sequence.

Examples

			8 = 4 + 4, 12 = 4 + 8, 13 = 4 + 9.
		

Programs

  • PARI
    isP(n)={
      n>3 && vecmin(factor(n)[,2])>1
    };
    sumset(a,b)={
      my(c=vector(#a*#b));
      for(i=1,#a,
        for(j=1,#b,
          c[(i-1)*#b+j]=a[i]+b[j]
        )
      );
      vecsort(c,,8)
    };
    upto(lim)={
      my(v=select(isP, vector(floor(lim),i,i)));
      select(n->n<=lim, sumset(v,v))
    };
Showing 1-10 of 13 results. Next