cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085252 Number of ways to write n as sum of two powerful numbers (A001694).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			a(81) = 2: 81 = 9 + 72 = A001694(4) + A001694(12) = 32 + 49 = A001694(8) + A001694(10).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 120}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}]] (* Amiram Eldar, Jan 30 2023 *)

Formula

a(A085253(n)) = 0.
a(A076871(n)) > 0.
a(A085254(n)) = 1.
a(A085255(n)) > 1.

A085255 Numbers having at least two representations as a sum of two powerful numbers (A001694).

Original entry on oeis.org

17, 33, 36, 40, 41, 50, 52, 57, 65, 68, 72, 73, 76, 80, 81, 85, 89, 97, 104, 108, 109, 113, 116, 117, 125, 129, 130, 132, 133, 136, 137, 144, 145, 148, 152, 153, 157, 160, 164, 170, 172, 177, 180, 185, 189, 193, 197, 200, 201, 204, 205, 208, 209, 216, 221
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 222}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Position[BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}], ?(# > 1 &)] // Flatten] (* _Amiram Eldar, Jan 30 2023 *)

Formula

A085252(a(n)) > 1.

A115354 a(n) is the smallest number representable in exactly n ways as a sum of 2 powerful(1) numbers.

Original entry on oeis.org

2, 17, 108, 153, 297, 657, 1764, 2052, 4644, 6156, 10800, 16200, 22932, 29000, 11025, 54225, 92025, 68796, 100548, 99225, 44100, 88200, 264600, 431244, 176400, 441000, 666468, 1151172, 352800, 617400, 396900, 926100, 980100, 793800, 1234800
Offset: 1

Views

Author

Giovanni Resta, Jan 21 2006

Keywords

Comments

Here we are considering powerful numbers (first definition) A001694. Note that, by definition, 1 is powerful.

Examples

			a(2)=17, since 17 = 16+1 = 8+9.
		

Crossrefs

Programs

  • Mathematica
    pwfQ[n_] := n == 1 || Min[Transpose[FactorInteger@n][[2]]] > 1; lim=200000; pt = Select[Range[lim], pwfQ]; t = Table[0, {i, lim}]; Do[v = pt[[i]]+ pt[[j]]; If[v<=lim, t[[v]]++ ], {i, Length@pt}, {j, i}]; Table[Position[t, k][[1, 1]], {k, 22}]

Extensions

a(23)-a(35) from Donovan Johnson, Dec 07 2008

A115355 a(n) is the smallest number representable in exactly n ways as a sum of 3 powerful(1) numbers.

Original entry on oeis.org

3, 17, 33, 41, 66, 77, 89, 117, 133, 145, 153, 189, 161, 225, 301, 257, 324, 333, 341, 297, 432, 425, 369, 517, 613, 441, 521, 585, 513, 809, 689, 792, 657, 1001, 801, 881, 1000, 1017, 873, 945, 900, 1265, 1169, 1425, 1089, 1125, 1197, 1481, 1161, 1584
Offset: 1

Views

Author

Giovanni Resta, Jan 21 2006

Keywords

Comments

Here we are considering powerful numbers (first definition) A001694. Note that, by definition, 1 is powerful.

Examples

			a(2) = 17 since 17 = 4+4+9 = 8+8+1.
		

Crossrefs

Programs

  • Mathematica
    pwfQ[n_] := n==1 || Min[Transpose[FactorInteger@n][[2]]] > 1; lim = 5000; pt = Select[Range[lim], pwfQ]; t = Table[0, {i, lim}]; Do[v = pt[[i]]+pt[[j]]+pt[[k]]; If[v <= lim, t[[v]]++ ], {i, Length@pt}, {j, i}, {k, j}]; Table[Position[t, k][[1, 1]], {k, 60}]
Showing 1-4 of 4 results.