A139642
Irregular triangle where row n gives the congruence (mod 4N) for the primes represented by the quadratic form x^2+Ny^2, where N=A000926(n) is a convenient number.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 7, 1, 5, 9, 13, 1, 5, 9, 1, 7, 1, 7, 9, 11, 15, 23, 25, 1, 9, 17, 25, 1, 13, 25, 1, 9, 11, 19, 1, 13, 25, 37, 1, 9, 13, 17, 25, 29, 49, 1, 19, 31, 49, 1, 9, 17, 25, 33, 41, 49, 57, 1, 19, 25, 43, 49, 67, 1, 25, 37, 1, 9, 15, 23, 25, 31, 47, 49, 71, 81, 1, 25, 49, 73, 1, 9
Offset: 1
1, 2,
1, 2, 3,
1, 3, 7,
1, 5, 9, 13,
1, 5, 9,
1, 7,
1, 7, 9, 11, 15, 23, 25,
1, 9, 17, 25,
1, 13, 25,
1, 9, 11, 19,
1, 13, 25, 37,
1, 9, 13, 17, 25, 29, 49,
1, 19, 31, 49,
1, 9, 17, 25, 33, 41, 49, 57,
1, 19, 25, 43, 49, 67,
1, 25, 37,
1, 9, 15, 23, 25, 31, 47, 49, 71, 81,
1, 25, 49, 73,
...
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 3.
See the Binary Quadratic Forms and OEIS link for full list of primes generated by x^2+Ny^2, where N is a convenient number.
A139826
Squarefree idoneal numbers (A000926).
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 13, 15, 21, 22, 30, 33, 37, 42, 57, 58, 70, 78, 85, 93, 102, 105, 130, 133, 165, 177, 190, 210, 253, 273, 330, 345, 357, 385, 462, 1365
Offset: 1
A340132
Least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequence A000926 (idoneal numbers).
Original entry on oeis.org
1083289, 3818929, 6104641, 6868801, 7623529, 8465209, 9033649, 10105489, 11400481, 11597569, 11809561, 12338041, 12348961, 13154761, 13426009, 15861169, 16889161, 16922161, 18596449, 19684729, 20322481, 21067201, 21480001, 22684561, 23654569, 24531049
Offset: 1
1083289 = 315^2 + A000926(1)*992^2
= 1033^2 + A000926(2)*90^2
= 979^2 + A000926(3)*204^2
= ...
= 817^2 + A000926(65)*15^2.
-
Idoneal()={return(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));}
isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
Primo(p, m)={my(u=Idoneal()); while(pr,v=concat(v,q),q=m)); return(v);}
A074402
Multiplicative closure of Euler's "numeri idonei" (A000926).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 37, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 58, 60, 63, 64, 65, 66, 70, 72, 74, 75, 78, 80, 81, 84, 85, 88, 90, 91, 93, 96, 98, 99, 100, 102, 104, 105, 108, 110
Offset: 1
22 is a term as A000926(17) = 22; 55 is not a term as 55 = 5*11 and neither 5 nor 11 are in A000926; 110 = 5*22 = A000926(5)*A000926(17), therefore 110 is a term.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45
Offset: 1
A340133
The sequence lists the least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequences A000926 (Idoneal numbers) and A003173 (Heegner numbers). See example.
Original entry on oeis.org
3230498881, 5086789009, 6956459689, 7260636769, 12387462649, 13125124321, 14049841129, 14247509329, 14310889849, 15871864849, 16573389361, 17502040609, 17768627809, 22042168201, 22621870441, 22957650769, 23018043409, 23819076121, 25228204849, 26585136601
Offset: 1
3230498881 = 2465^2+A000926(1)*56784^2
= 56609^2+A000926(2)*3600^2
= 35927^2+A000926(3)*25428^2
= ...
= 56791^2+A003173(9)*180^2
= ...
= 35743^2+A000926(65)*1028^2
-
Union()={ my (v);v=(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));for(k=3, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d)));return(v);}
isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
Primo(p, m)={my(u=Union()); while(pr,v=concat(v,q),q=m)); return(v);}
A139827
Primes of the form 2x^2 + 2xy + 17y^2.
Original entry on oeis.org
2, 17, 29, 41, 101, 149, 173, 197, 233, 281, 293, 461, 557, 569, 593, 677, 701, 761, 809, 821, 857, 941, 953, 1097, 1217, 1229, 1289, 1361, 1481, 1493, 1553, 1601, 1613, 1733, 1877, 1889, 1913, 1949, 1997, 2081, 2129, 2141, 2153, 2213, 2273, 2309, 2393, 2417
Offset: 1
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Cf.
A139643,
A139841-
A139843 (d=-408),
A139644,
A139844-
A139850 (d=-420),
A139645,
A139851-
A139853 (d=-448),
A139502,
A139854-
A139860 (d=-480),
A139646,
A139861-
A139863 (d=-520),
A139647,
A139864-
A139866 (d=-532),
A139648,
A139867-
A139873 (d=-660),
A139506,
A139874-
A139880 (d=-672),
A139649,
A139881-
A139883 (d=-708),
A139650,
A139884-
A139886 (d=-760),
A139651,
A139887-
A139893 (d=-840),
A139652,
A139894-
A139896 (d=-928),
A139502,
A139855,
A139857,
A139858,
A139897-
A139899,
A139902 (d=-960).
Cf. also
A139653,
A139904-
A139906 (d=-1012),
A139654,
A139907-
A139913 (d=-1092),
A139655,
A139914-
A139920 (d=-1120),
A139656,
A139921-
A139927 (d=-1248),
A139657,
A139928-
A139934 (d=-1320),
A139658,
A139935-
A139941 (d=-1380),
A139659,
A139942-
A139948 (d=-1428),
A139660,
A139949-
A139955 (d=-1540),
A139661,
A139956-
A139962 (d=-1632),
A139662,
A139963-
A139969 (d=-1848),
A139663,
A139970-
A139976 (d=-2080),
A139664,
A139977-
A139983 (d=-3040),
A139665,
A139984-
A139998 (d=-3360),
A139666,
A139999-
A140013 (d=-5280),
A139667,
A140014-
A140028 (d=-5460),
A139668,
A140029-
A140043 (d=-7392).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
-
[ p: p in PrimesUpTo(2500) | p mod 132 in {2, 17, 29, 41, 65, 101}]; // Vincenzo Librandi, Jul 29 2012
-
QuadPrimes2[2, -2, 17, 2500] (* see A106856 *)
t = Table[{2, 17, 29, 41, 65, 101} + 132*n, {n, 0, 50}]; Select[Flatten[t], PrimeQ] (* T. D. Noe, Jun 21 2012 *)
-
v=[2, 17, 29, 41, 65, 101]; select(p->setsearch(v,p%132),primes(100)) \\ Charles R Greathouse IV, Jan 08 2013
A139643
Primes of the form x^2+Ny^2, with N=102.
Original entry on oeis.org
103, 127, 151, 223, 271, 409, 433, 457, 463, 577, 631, 727, 769, 919, 937, 967, 1033, 1039, 1063, 1087, 1249, 1279, 1327, 1447, 1471, 1543, 1657, 1753, 1759, 1777, 1783, 1801, 1879, 1951, 1993, 2089, 2143, 2161, 2287, 2311, 2473, 2503, 2551
Offset: 1
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
- L. E. Dickson, History of the Theory of Numbers, Vol 3, Chelsea, 1923.
Cf.
A139644,
A139645,
A139502,
A139646,
A139647,
A139648,
A139506,
A139649,
A139650,
A139651,
A139652,
A139502,
A139653-
A139668.
-
[ p: p in PrimesUpTo(3000) | p mod 408 in {1, 25, 49, 55, 103, 121, 127, 145, 151, 169, 217, 223, 247, 271, 319, 361}]; // Vincenzo Librandi, Jul 28 2012
-
k:=102; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
-
C:= [1, 25, 49, 55, 103, 121, 127, 145, 151, 169, 217, 223, 247, 271, 319, 361]:
select(isprime, [seq(seq(408*i+j,j=C),i=0..100)]); # Robert Israel, Jul 03 2016
-
nn=102; pMax=10000; Union[Reap[Do[p=x^2+nn*y^2; If[p<=pMax && PrimeQ[p], Sow[p]], {x,Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2,1]]] (* T. D. Noe, Aug 02 2009 *)
QuadPrimes2[1, 0, 102, 10000] (* see A106856 *)
A107008
Primes of the form x^2 + 24*y^2.
Original entry on oeis.org
73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713
Offset: 1
- Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi, next 143 terms from N. J. A. Sloane]
- P. L. Clark, J. Hicks, H. Parshall, K. Thompson, GONI: primes represented by binary quadratic forms, INTEGERS 13 (2013) #A37
- D. A. Cox, Primes of the form x^2 + n*y^2, A Wiley-Interscience publication, 1989
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007) 1589-1617
Subset of
A033199 (2y here = y there).
See also the cross-references in
A140633.
-
QuadPrimes[1, 0, 24, 10000] (* see A106856 *)
-
is(n) = isprime(n) && #qfbsolve(Qfb(1, 0, 24), n) == 2 \\ David A. Corneth, Jun 21 2020
Recomputed b-file, deleted incorrect Mma program. -
N. J. A. Sloane, Jun 08 2014
Showing 1-10 of 52 results.
Comments