A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A139827 Primes of the form 2x^2 + 2xy + 17y^2.
2, 17, 29, 41, 101, 149, 173, 197, 233, 281, 293, 461, 557, 569, 593, 677, 701, 761, 809, 821, 857, 941, 953, 1097, 1217, 1229, 1289, 1361, 1481, 1493, 1553, 1601, 1613, 1733, 1877, 1889, 1913, 1949, 1997, 2081, 2129, 2141, 2153, 2213, 2273, 2309, 2393, 2417
Offset: 1
Comments
Discriminant = -132.
Consider the quadratic form f(x,y) = ax^2 + bxy + cy^2. When the discriminant d=b^2-4ac is -4 times an idoneal number (A000926), there is exactly one class for each genus. As a result, the primes generated by f(x,y) are the same as the primes congruent to S (mod -d), where S is a set of numbers less than -d. The table on page 60 of Cox shows that there are exactly 331 quadratic forms having this property. The 217 sequences starting with this one complete the collection in the OEIS.
When a=1 and b=0, f(x,y) is a quadratic form whose congruences are discussed in A139642. Let N be an idoneal number. Then there are 2^r reduced quadratic forms whose discriminant is -4N, where r=1,2,3, or 4. By collecting the residuals p (mod 4N) for primes p generated by the i-th reduced quadratic form, we can empirically find a set Si. To show that the 2^r sets Si are complete, we only need to show that the union of the Si is equal to the set of numbers k such that the Jacobi symbol (-k/4N)=1.
References
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A139643, A139841-A139843 (d=-408), A139644, A139844-A139850 (d=-420), A139645, A139851-A139853 (d=-448), A139502, A139854-A139860 (d=-480), A139646, A139861-A139863 (d=-520), A139647, A139864-A139866 (d=-532), A139648, A139867-A139873 (d=-660), A139506, A139874-A139880 (d=-672), A139649, A139881-A139883 (d=-708), A139650, A139884-A139886 (d=-760), A139651, A139887-A139893 (d=-840), A139652, A139894-A139896 (d=-928), A139502, A139855, A139857, A139858, A139897-A139899, A139902 (d=-960).
Cf. also A139653, A139904-A139906 (d=-1012), A139654, A139907-A139913 (d=-1092), A139655, A139914-A139920 (d=-1120), A139656, A139921-A139927 (d=-1248), A139657, A139928-A139934 (d=-1320), A139658, A139935-A139941 (d=-1380), A139659, A139942-A139948 (d=-1428), A139660, A139949-A139955 (d=-1540), A139661, A139956-A139962 (d=-1632), A139662, A139963-A139969 (d=-1848), A139663, A139970-A139976 (d=-2080), A139664, A139977-A139983 (d=-3040), A139665, A139984-A139998 (d=-3360), A139666, A139999-A140013 (d=-5280), A139667, A140014-A140028 (d=-5460), A139668, A140029-A140043 (d=-7392).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Magma
[ p: p in PrimesUpTo(2500) | p mod 132 in {2, 17, 29, 41, 65, 101}]; // Vincenzo Librandi, Jul 29 2012
-
Mathematica
QuadPrimes2[2, -2, 17, 2500] (* see A106856 *) t = Table[{2, 17, 29, 41, 65, 101} + 132*n, {n, 0, 50}]; Select[Flatten[t], PrimeQ] (* T. D. Noe, Jun 21 2012 *)
-
PARI
v=[2, 17, 29, 41, 65, 101]; select(p->setsearch(v,p%132),primes(100)) \\ Charles R Greathouse IV, Jan 08 2013
Formula
The primes are congruent to {2, 17, 29, 41, 65, 101} (mod 132).
A068228 Primes congruent to 1 (mod 12).
13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 457, 541, 577, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 937, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297
Offset: 1
Comments
This has several equivalent definitions (cf. the Tunnell link)
Also primes of the form x^2 + 9y^2 (discriminant -36). - T. D. Noe, May 07 2005 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 - 12y^2 (discriminant 48). Cf. A140633. - T. D. Noe, May 19 2008 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 + 4*x*y + y^2.
Also primes of the form x^2 + 2*x*y - 2*y^2 (cf. A084916).
Also primes of the form x^2 + 6*x*y - 3*y^2.
Also primes of the form 4*x^2 + 8*x*y + y^2.
Also primes of the form u^2 - 3v^2 (use the transformation {u,v} = {x+2y,y}). - Tito Piezas III, Dec 28 2008
Sequence lists generalized cuban primes (A007645) that are the sum of 2 nonzero squares. - Altug Alkan, Nov 25 2015
Yasutoshi Kohmoto observes that prevprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the previous prime must be at a gap of 4 or 8 or 12 ..., but a gap of 4 is impossible because 12k + 1 - 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the previous prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs. 65% as the above simple explanation suggests, but considering primes up to 10^8 yields a ratio of about 41% vs. 59%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017
Also primes of the form x^2 - 27*y^2. - Klaus Purath, Jan 18 2023
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy, with permission]
- Michael Penn, an example right from my number theory class., YouTube video, 2021.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. B. Tunnell, Proofs of Conjectures Concerning Entry A033212, the Sequence of Primes Congruent to 1 or 19 (mod 30)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 1589-1617.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A068227, A068229, A040117, A068231, A068232, A068233, A068234, A068235, A139643, A141122, A140633, A264732.
Subsequence of A084916.
Subsequence of A007645.
Cf. A141123 (d=12), A141111, A141112 (d=65), A141187 (d=48) A038872 (d=5), A038873 (d=8), A038883 (d=13), A038889 (d=17).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Magma
[p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012 For other programs see the "Binary Quadratic Forms and OEIS" link.
-
Maple
select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
-
Mathematica
Select[Prime/@Range[250], Mod[ #, 12]==1&] Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
-
PARI
for(i=1,250, if(prime(i)%12==1, print(prime(i))))
-
PARI
forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
Extensions
Edited by Dean Hickerson, Feb 27 2002
Entry revised by N. J. A. Sloane, Oct 18 2014 (Edited, merged with A141122, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008).
A007519 Primes of form 8n+1, that is, primes congruent to 1 mod 8.
17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321, 1361
Offset: 1
Comments
Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Integers n (n > 9) of form 4k + 1 such that binomial(n-1, (n-1)/4) == 1 (mod n) - Benoit Cloitre, Feb 07 2004
Primes of the form x^2 + 8y^2. - T. D. Noe, May 07 2005
Is this the same sequence as A141174?
Being a subset of A001132 and also a subset of A038873, this is also a subset of the primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
These primes p are only which possess the property: for every integer m from interval [0, p) with the Hamming distance D(m, p) = 2, there exists an integer h from (m, p) with D(m, h) = 2. - Vladimir Shevelev, Apr 18 2012
Primes p such that p XOR 6 = p + 6. - Brad Clardy, Jul 22 2012
Odd primes p such that -1 is a 4th power mod p. - Eric M. Schmidt, Mar 27 2014
There are infinitely many primes of this form. See Brubaker link. - Alonso del Arte, Jan 12 2017
These primes split in Z[sqrt(2)]. For example, 17 = (-1)(1 - 3*sqrt(2))(1 + 3*sqrt(2)). This is also true of primes of the form 8n - 1. - Alonso del Arte, Jan 26 2017
Examples
a(1) = 17 = 2 * 8 + 1 = (10001)_2. All numbers m from [0, 17) with the Hamming distance D(m, 17) = 2 are 0, 3, 5, 9. For m = 0, we can take h = 3, since 3 is drawn from (0, 17) and D(0, 3) = 2; for m = 3, we can take h = 5, since 5 from (3, 17) and D(3, 5) = 2; for m = 5, we can take h = 6, since 6 from (5, 17) and D(5, 6) = 2; for m = 9, we can take h = 10, since 10 is drawn from (9, 17) and D(9, 10) = 2. - _Vladimir Shevelev_, Apr 18 2012
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Ben Brubaker, 18.781, Fall 2007 Problem Set 5: Solutions to Selected Problems, MIT (2007).
- Peter Luschny, Binary Quadratic Forms
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 521.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Haskell
a007519 n = a007519_list !! (n-1) a007519_list = filter ((== 1) . a010051) [1,9..] -- Reinhard Zumkeller, Mar 06 2012
-
Magma
[p: p in PrimesUpTo(2000) | p mod 8 eq 1 ]; // Vincenzo Librandi, Aug 21 2012
-
Mathematica
Select[1 + 8 Range@ 170, PrimeQ] (* Robert G. Wilson v *)
-
PARI
forprime(p=2,1e4,if(p%8==1,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
-
PARI
forprimestep(p=17,10^4,8, print1(p", ")) \\ Charles R Greathouse IV, Jul 17 2024
-
PARI
lista(nn)= my(vpr = []); for (x = 0, nn, y = 0; while ((v = x^2+6*x*y+y^2) < nn, if (isprime(v), if (! vecsearch(vpr, v), vpr = concat(vpr, v); vpr = vecsort(vpr););); y++;);); vpr; \\ Michel Marcus, Feb 01 2014
-
PARI
A007519_upto(N, start=1)=select(t->t%8==1,primes([start,N])) #A7519=A007519_upto(10^5) A007519(n)={while(#A7519
A007519_upto(N*3\2, N+1))); A7519[n]} \\ M. F. Hasler, May 22 2025 -
SageMath
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([1, 4, -4]) print(Q.represented_positives(1361, 'prime')) # Peter Luschny, Jan 26 2017
A033212 Primes congruent to 1 or 19 (mod 30).
19, 31, 61, 79, 109, 139, 151, 181, 199, 211, 229, 241, 271, 331, 349, 379, 409, 421, 439, 499, 541, 571, 601, 619, 631, 661, 691, 709, 739, 751, 769, 811, 829, 859, 919, 991, 1009, 1021, 1039, 1051, 1069, 1129, 1171, 1201, 1231, 1249, 1279, 1291, 1321, 1381
Offset: 1
Comments
Theorem: Same as primes of the form x^2+15*y^2 (discriminant -60). Proof: Cox, Cor. 2.27, p. 36.
Equivalently, primes congruent to 1 or 4 (mod 15). Also x^2+xy+4y^2 is the principal form of (fundamental) discriminant -15. The only other class for -15 contains the form 2x^2+xy+2y^2 (A106859), in the other genus. - Rick L. Shepherd, Jul 25 2014
Three further theorems (these were originally stated as conjectures, but are now known to be theorems, thanks to the work of J. B. Tunnell - see link):
1. The same as primes of the form x^2-xy+4y^2 (discriminant -15) and x^2-xy+19y^2 (discriminant -75), both with x and y nonnegative. - T. D. Noe, Apr 29 2008
2. The same as primes of the form x^2+xy+19y^2 (discriminant -75), with x and y nonnegative. - T. D. Noe, Apr 29 2008
3. The same as primes of the form x^2+5xy-5y^2 (discriminant 45). - N. J. A. Sloane, Jun 01 2014
Also primes of the form x^2+7*x*y+y^2 (discriminant 45).
Lemma (Will Jagy, Jun 12 2014): If c is any (positive or negative) even number, then x^2 + x y + c y^2 and x^2 + (4 c - 1) y^2 represent the same odd numbers.
Proof: x (x + y) + c y^2 = odd, therefore x is odd, x + y odd, so y is even. Let y = 2 t. Then x( x + 2 t) + 4 c t^2 = x^2 + 2 x t + 4 c t^2 = (x+t)^2 + (4c-1) t^2 = odd. QED With c = 4, neither one represents 2, so x^2+15y^2 and x^2+xy+4y^2 represent the same primes.
Also, primes which are squares (mod 3*5). Subsequence of A191018. - David Broadhurst and M. F. Hasler, Jan 15 2016
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- J. B. Tunnell, Proofs of Conjectures Concerning Entry A033212, the Sequence of Primes Congruent to 1 or 19 (mod 30)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A141785 (d=45), A033212 (Primes of form x^2+15*y^2), A038872(d=5), A038873 (d=8), A068228, A141123 (d=12), A038883 (d=13), A038889 (d=17), A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Mathematica
QuadPrimes2[1, 0, 15, 10000] (* see A106856 *) Select[Prime@Range[250], MemberQ[{1, 19}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
-
PARI
select(n->n%30==1||n%30==19, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
-
PARI
is(p)=issquare(Mod(p,15))&&isprime(p) \\ M. F. Hasler, Jan 15 2016
Formula
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012
Extensions
Edited by N. J. A. Sloane, Jun 01 2014 and Oct 18 2014: added Tunnell document, revised entry, merged with A141184. The latter entry was submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008.
Typo in crossrefs fixed by Colin Barker, Apr 05 2015
A107152 Primes of the form x^2 + 45y^2.
61, 109, 181, 229, 241, 349, 409, 421, 541, 601, 661, 709, 769, 829, 1009, 1021, 1069, 1129, 1201, 1249, 1321, 1381, 1429, 1489, 1549, 1609, 1621, 1669, 1741, 1789, 1801, 1861, 2029, 2089, 2161, 2221, 2269, 2281, 2341, 2389, 2521, 2689, 2749, 3001, 3049, 3061, 3109, 3121, 3169, 3181
Offset: 1
Comments
Discriminant = -180. See A107132 for more information.
Also primes of the form x^2+6*x*y-6*y^2, of discriminant 60 (as well as of the form x^2+8*x*y+y^2). - Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(3000) | p mod 60 in {1, 49 } ]; // Vincenzo Librandi, Jul 24 2012
-
Mathematica
QuadPrimes2[1, 0, 45, 10000] (* see A106856 *) Select[Prime[Range[500]], MatchQ[Mod[#, 60], 1|49]&] (* Jean-François Alcover, Oct 28 2016 *)
-
PARI
list(lim)=my(v=List(),t); forprime(p=61,lim, t=p%60; if(t==1||t==49, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
Primes congruent to {1, 49} (mod 60). - T. D. Noe, Apr 29 2008
A107145 Primes of the form x^2 + 40y^2.
41, 89, 241, 281, 401, 409, 449, 521, 569, 601, 641, 761, 769, 809, 881, 929, 1009, 1049, 1129, 1201, 1249, 1289, 1321, 1361, 1409, 1481, 1489, 1601, 1609, 1721, 1801, 1889, 2081, 2089, 2129, 2161, 2281, 2441, 2521, 2609, 2689, 2729, 2801
Offset: 1
Comments
Discriminant = -160. See A107132 for more information.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A139643.
Programs
-
Magma
[ p: p in PrimesUpTo(3000) | p mod 40 in {1, 9} ]; // Vincenzo Librandi, Jul 24 2012
-
Mathematica
QuadPrimes2[1, 0, 40, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),t); forprime(p=41,lim, t=p%40; if(t==1||t==9, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
The primes are congruent to {1, 9} (mod 40). - T. D. Noe, Apr 29 2008
A033205 Primes of form x^2 + 5*y^2.
5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 1009, 1021, 1049, 1061, 1069, 1109, 1129, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1361, 1381, 1409, 1429, 1481, 1489
Offset: 1
Comments
It is a classical result that p is of the form x^2 + 5y^2 if and only if p = 5 or p == 1 or 9 mod 20 (see Cox, page 33). - N. J. A. Sloane, Sep 20 2012
Or, 5 and all primes p that divide Fibonacci((p - 1)/2) = A121568(n). - Alexander Adamchuk, Aug 07 2006
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 2000 terms from Vincenzo Librandi]
- B. W. Brewer, On primes of the form u^2+5v^2, Am. Math. Monthly vol. 17 no 2 (1966) pp 502-509.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(2000) | NormEquation(5,p) eq true]; // Bruno Berselli, Jul 03 2016
-
Mathematica
QuadPrimes2[1, 0, 5, 10000] (* see A106856 *)
-
PARI
is(n)=my(k=n%20); n==5 || ((k==9 || k==9) && isprime(n)) \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012
A033215 Primes of form x^2+21*y^2.
37, 109, 193, 277, 337, 373, 421, 457, 541, 613, 673, 709, 757, 877, 1009, 1033, 1093, 1117, 1129, 1201, 1213, 1297, 1381, 1429, 1453, 1549, 1597, 1621, 1789, 1801, 1873, 1933, 2017, 2053, 2137, 2221
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A139643.
Programs
-
Mathematica
QuadPrimes2[1, 0, 21, 10000] (* see A106856 *)
Formula
Equivalently, primes congruent to {1, 25, or 37} (mod 84). - T. D. Noe, Apr 29 2008 [See e.g. Cox, p. 36. - N. J. A. Sloane, May 27 2014]
A139489 Primes of the form x^2+101y^2.
101, 137, 677, 1009, 1493, 1693, 1697, 1933, 3137, 3613, 3637, 3701, 3821, 4217, 4261, 4273, 4289, 4373, 4457, 4597, 4861, 5273, 5441, 5849, 6029, 6037, 6473, 6661, 6689, 7193, 7253, 7309, 8377, 8581, 8609, 8677, 9337, 9781, 10133, 10181, 10433
Offset: 1
Keywords
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Mathematica
a = {}; w = 101; Do[Do[If[PrimeQ[n^2 + w*m^2], AppendTo[a, n^2 + w*m^2]], {n, 1, 700}], {m, 1, 200}]; Union[a] QuadPrimes2[1,0,101,11000] (* see A106856 *)
Extensions
101 term prepended by T. D. Noe, Nov 05 2009
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions