cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A139490 Numbers n such that the quadratic form x^2 + n*x*y + y^2 represents exactly the same primes as the quadratic form x^2 + m*y^2 for some m.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 14, 16, 18, 22, 26, 38, 58, 82, 86
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008, Apr 26 2008, Apr 27 2008

Keywords

Comments

For the numbers m see A139491.
Conjecture: This sequence is finite and complete (checked for range n<=200 and m<=500).
Three more terms were found by searching n <= 1000 and m <= 4000. The corresponding m are 840, 840, and 1848, which are idoneal numbers A000926. The sequence is probably complete now. [T. D. Noe, Apr 27 2009]

Examples

			a(1)=1 because the primes represented by x^2+xy+y^2 are the same as the primes represented by x^2 + 3*y^2 (see A007645).
The known pairs (n,m) are the following (checked for range n<=200 and m<=500):
n={1, 4, 4, 6, 6, 7, 8, 8, 10, 10, 10, 14, 14, 14, 16, 18, 22, 22, 26, 38, 38}
m={3, 9, 12, 8, 16, 15, 45, 60, 24, 48, 72, 24, 48, 72, 21, 40, 120, 240, 168, 120, 240}.
		

Crossrefs

Programs

  • Mathematica
    f = 200; g = 300; h = 30; j = 100; b = {}; Do[a = {}; Do[Do[If[PrimeQ[x^2 + n y^2], AppendTo[a, x^2 + n y^2]], {x, 0, g}], {y, 1, g}]; AppendTo[b, Take[Union[a], h]], {n, 1, f}]; Print[b]; c = {}; Do[a = {}; Do[Do[If[PrimeQ[n^2 + w*n*m + m^2], AppendTo[a, n^2 + w*n*m + m^2]], {n, m, g}], {m, 1, g}]; AppendTo[c, Take[Union[a], h]], {w, 1, j}]; Print[c]; bb = {}; cc = {}; Do[Do[If[b[[p]] == c[[q]], AppendTo[bb, p]; AppendTo[cc, q]], {p, 1, f}], {q, 1, j}]; Union[cc] (*Artur Jasinski*)

Extensions

Edited by N. J. A. Sloane, Apr 25 2008
Extended by T. D. Noe, Apr 27 2009
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A139492 Primes of the form x^2 + 5x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Reduced form is [1, 3, -3]. Discriminant = 21. Class number = 2.
Values of the quadratic form are {0, 1, 3, 4} mod 6, so this is a subsequence of A002476. - R. J. Mathar, Jul 30 2008
It can be checked that the primes p of the form x^2 + n*x*y + y^2, n >= 3, where x and y are nonnegative, depend on n mod 6 as follows: n mod 6 = 0 => p mod 12 = {1,5}; n mod 6 = 1 => p mod 12 = {1,7}; n mod 6 = 2 => p mod 12 = {1}; n mod 6 = 3 => p mod 12 = {1,5,7,11}; n mod 6 = 4 => p mod 12 = {1}; n mod 6 = 5 => p mod 12 = {1,7}. - Walter Kehowski, Jun 01 2008

Examples

			a(1) = 7 because we can write 7 = 1^2 + 5*1*1 + 1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243172.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    a = {}; w = 5; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 5, 1])
    print(Q.represented_positives(1303, 'prime')) # Peter Luschny, May 12 2021

A139502 Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
  • Mathematica
    QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)

Formula

The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008

A139494 Primes of the form x^2 + 11x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 11; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139506 Primes of the form x^2 + 26x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

193, 337, 457, 673, 1009, 1033, 1129, 1201, 1297, 1801, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2713, 2857, 3049, 3217, 3313, 3361, 3529, 3697, 3889, 4057, 4153, 4201, 4561, 4657, 4729, 4993, 5209, 5233, 5569, 5737, 5881, 6073, 6217, 6337, 6553, 6577
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 168y^2. - T. D. Noe, Apr 29 2008
In base 12, the sequence is 141, 241, 321, 481, 701, 721, 7X1, 841, 901, 1061, 1101, 1201, 12X1, 1461, 1521, 1561, 1681, 16X1, 17X1, 1921, 1X41, 1E01, 1E41, 2061, 2181, 2301, 2421, 24X1, 2521, 2781, 2841, 28X1, 2X81, 3021, 3041, 3281, 33X1, 34X1, 3621, 3721, 3801, 3961, 3981, where X is 10 and E is 11. Moreover, the discriminant is 480. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 26; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]

Formula

The primes are congruent to {1, 25, 121} (mod 168). - T. D. Noe, Apr 29 2008

A139512 Primes of the form x^2 + 32*x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

229, 349, 409, 421, 661, 769, 829, 1021, 1069, 1249, 1381, 1429, 1549, 1789, 1801, 1861, 2089, 2161, 2269, 2389, 3001, 3061, 3109, 3181, 3229, 3469, 3889, 4021, 4129, 4201, 4441, 4861, 4909, 5101, 5449, 5521, 5869, 5881, 6121, 6469, 6481, 6529, 6781
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Are all terms == 1 mod 12? - Zak Seidov, Apr 25 2008
Yes: (i) all terms == 1 mod 3 because the quadratic form has terms == {0,1} mod 3 and the values ==0 mod 3 are not primes. (ii) all terms == 1 mod 4 because the quadratic form has terms == {0,1,2} mod 4 and the values = {0,2} mod 4 are not primes. By the Chinese remainder constructions for coprime 3 and 4 all prime terms are == 1 mod 12. - R. J. Mathar, Jun 10 2020

Crossrefs

Programs

  • Mathematica
    a = {}; w = 32; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A155488 Primes p with property that p^2 is of the form x^2 + 40y^2.

Original entry on oeis.org

7, 11, 13, 19, 23, 37, 41, 47, 53, 59, 89, 103, 127, 131, 139, 157, 167, 173, 179, 197, 211, 223, 241, 251, 263, 277, 281, 293, 317, 331, 367, 373, 379, 383, 397, 401, 409, 419, 449, 463, 487, 491, 499, 503, 521, 557, 569, 571, 601, 607, 613, 619, 641, 647
Offset: 1

Views

Author

Zak Seidov, Jan 23 2009

Keywords

Comments

All p^2 are congruent to {1, 9} (mod 40), as in A107145.
Rational primes that decompose in the field Q(sqrt(-10)). - N. J. A. Sloane, Dec 26 2017

Crossrefs

Cf. A107145 (Primes of the form x^2 + 40y^2).

Programs

A139505 Primes of the form x^2 + 25x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

151, 163, 307, 397, 409, 541, 547, 601, 673, 811, 823, 859, 967, 997, 1153, 1231, 1237, 1327, 1567, 1669, 1741, 1879, 2083, 2143, 2281, 2293, 2557, 2677, 2707, 2833, 2971, 3037, 3259, 3313, 3433, 3877, 4003, 4129, 4153, 4603, 4639, 4861, 4957, 5101, 5227
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 25; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=80},Select[Union[#[[1]]^2+25#[[1]]#[[2]]+#[[2]]^2&/@Tuples[ Range[ 0,nn],2]],PrimeQ[#]&&#Harvey P. Dale, Feb 10 2020 *)

A139493 Primes of the form x^2 + 9x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

11, 23, 37, 53, 67, 71, 113, 137, 163, 179, 191, 317, 331, 379, 389, 401, 421, 443, 449, 463, 487, 499, 599, 617, 631, 641, 653, 683, 709, 751, 757, 823, 863, 883, 907, 911, 947, 977, 991, 1061, 1087, 1093, 1103, 1171, 1213, 1303, 1367, 1373, 1409, 1423
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

This is a member of the family of sequences of primes of the forms x^2 + kxy + y^2.
See for k=1 A007645 = x^2+3y^2, k=2 squares no primes, k=3 A038872, k=4 A068228 = x^2+9y^2, k=5 A139492, k=6 A007519 = x^2+8y^2, k=7 A033212 = x^2+15y^2, k=8 A107152 = x^2+45y^2, k=9 A139493, k=10 A107008 = x^2+24y^2, k=11 A139494, k=12 A139495, k=13 A139496, k=14* = 10 A107008 = x^2+24y^2, k=15 A139497, k=16 A033215 = x^2+21y^2, k=17 A139498, k=18 A107145 = x^2+40y^2, k=19 A139499, k=20 A139500, k=21 A139501, k=22 A139502, k=23 A139503, k=24 A139504, k=25 A139505, k=26,A139506, k=27 A139507, k=28 A139508, k=29 A139509, k=30 A139510, k=31 A139511, k=32 A139512

Crossrefs

Programs

  • Mathematica
    a = {}; w = 9; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
Showing 1-10 of 25 results. Next