cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141159 Duplicate of A139492.

Original entry on oeis.org

7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Name was: Primes of the form x^2 + 3*x*y - 3*y^2 (as well as of the form x^2 + 5*x*y + y^2).
Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac and gcd(a,b,c)=1 (primitive).
Primes of the form 6n+1 which cannot be expressed as 7k-1, 7k-2, or 7k-4. a(n)^2 == 1 (mod 24). - Gary Detlefs, Jan 26 2014
Besides 7 (which divides 21), primes of the form p == 1 (mod 3) and either == 1 or 2 or 4 (mod 7). For the other class, the primes represented by the principal form [3, 3, -1] (or primitive forms equivalent to this) are besides 3 (which divides 21), congruent to 2 (mod 3) and also to 3, 5, 6 (mod 7). For the primes of both classes see A038893. - Wolfdieter Lang, Jun 19 2019

Examples

			a(1)=7 because we can write 7 = 2^2 + 3*2*1 - 3*1^2 (or 7 = 1^2 + 5*1*1 + 1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Programs

  • Maple
    f:=n->7*ceil((6*n+1)/7)-(6*n+1):for n from 1 to 220 do if isprime(6*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(6*n+1) fi od. # Gary Detlefs, Jan 26 2014
  • Mathematica
    xy[{x_,y_}]:={x^2+3x y-3y^2,y^2+3x y -3x^2}; Union[Select[Flatten[xy/@ Subsets[ Range[50],{2}]],#>0&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 17 2013 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 3, -3])
    Q.represented_positives(1326, 'prime') # Peter Luschny, Jun 24 2019

Extensions

More terms from Harvey P. Dale, Feb 17 2013

A141160 Primes of the form -x^2 + 3*x*y + 3*y^2 (as well as of the form 5*x^2 + 9*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 17, 41, 47, 59, 83, 89, 101, 131, 167, 173, 227, 251, 257, 269, 293, 311, 353, 383, 419, 461, 467, 479, 503, 509, 521, 563, 587, 593, 647, 677, 719, 761, 773, 797, 839, 857, 881, 887, 929, 941, 971, 983, 1013, 1049, 1091, 1097, 1109, 1151, 1181, 1193
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (marcanmar(AT)alum.us.es), Jun 12 2008

Keywords

Comments

Discriminant = 21. Class number = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a,b,c) = 1 (primitive).
Except a(1) = 3, primes congruent to {5, 17, 20} mod 21. - Vincenzo Librandi, Jul 11 2018
The comment above is true since the binary quadratic forms with discriminant 21 are in two classes as well as two genera, so there is one class in each genus. A141159 is in the other genus, with primes = 7 or congruent to {1, 4, 16} mod 21. - Jianing Song, Jul 12 2018
4*a(n) can be written in the form 21*w^2 - z^2. - Bruno Berselli, Jul 13 2018
Both forms [-1, 3, 3] (reduced) and [5, 9, 3] (not reduced) are properly (via a determinant +1 matrix) equivalent to the reduced form [3, 3, -1], a member of the 2-cycle [[3, 3, -1], [-1, 3, 3]]. The other reduced form is the principal form [1, 3, -3], with 2-cycle [[1, 3, -3], [-3, 3, 1]] (see, e.g., A141159, A139492). - Wolfdieter Lang, Jun 24 2019

Examples

			a(3)=17 because we can write 17 = -1^2 + 3*1*2 + 3*2^2 (or 17 = 5*1^2 + 9*1*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A141159, A139492 (d=21) A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17): A141111, A141112 (d=65).
Primes in A237351.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo(2000) | p mod 21 in [5, 17, 20]]; // Vincenzo Librandi, Jul 11 2018
    
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 3*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
    Join[{3}, Select[Prime[Range[250]], MemberQ[{5, 17, 20}, Mod[#, 21]] &]] (* Vincenzo Librandi, Jul 11 2018 *)
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([-1, 3, 3])
    Q.represented_positives(1200, 'prime') # Peter Luschny, Jun 24 2019

Extensions

More terms from Colin Barker, Apr 05 2015

A038893 Odd primes p such that 21 is a square mod p.

Original entry on oeis.org

3, 5, 7, 17, 37, 41, 43, 47, 59, 67, 79, 83, 89, 101, 109, 127, 131, 151, 163, 167, 173, 193, 211, 227, 251, 257, 269, 277, 293, 311, 331, 337, 353, 373, 379, 383, 419, 421, 457, 461, 463, 467, 479, 487, 499, 503
Offset: 1

Views

Author

Keywords

Comments

These primes correspond to the representation of the two classes of discriminant 21 of binary quadratic forms with principal reduced forms [1, 3, -3] and [3, 3, -1]. The first class represents the primes given in A141159 (or A139492). The second class gives the prime 3 (which divides 21), and primes congruent to 2 (mod 3) and also to 3, 5, 6 (mod 7). The solution of x^2 - 21 == 0 (mod p) leads to the representative primitive parallel forms for discriminant 21 and representation of primes p. - Wolfdieter Lang, Jun 19 2019
Prime factors of A082111 and excluding the 3, prime factors of A004538. - Klaus Purath, Jan 04 2023

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], JacobiSymbol[21, #] != -1 &] (* Vincenzo Librandi, Sep 07 2012 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && issquare(Mod(21, p)); \\ Michel Marcus, Jun 19 2019

Extensions

Name clarified by Michel Marcus, Jun 22 2019

A139493 Primes of the form x^2 + 9x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

11, 23, 37, 53, 67, 71, 113, 137, 163, 179, 191, 317, 331, 379, 389, 401, 421, 443, 449, 463, 487, 499, 599, 617, 631, 641, 653, 683, 709, 751, 757, 823, 863, 883, 907, 911, 947, 977, 991, 1061, 1087, 1093, 1103, 1171, 1213, 1303, 1367, 1373, 1409, 1423
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

This is a member of the family of sequences of primes of the forms x^2 + kxy + y^2.
See for k=1 A007645 = x^2+3y^2, k=2 squares no primes, k=3 A038872, k=4 A068228 = x^2+9y^2, k=5 A139492, k=6 A007519 = x^2+8y^2, k=7 A033212 = x^2+15y^2, k=8 A107152 = x^2+45y^2, k=9 A139493, k=10 A107008 = x^2+24y^2, k=11 A139494, k=12 A139495, k=13 A139496, k=14* = 10 A107008 = x^2+24y^2, k=15 A139497, k=16 A033215 = x^2+21y^2, k=17 A139498, k=18 A107145 = x^2+40y^2, k=19 A139499, k=20 A139500, k=21 A139501, k=22 A139502, k=23 A139503, k=24 A139504, k=25 A139505, k=26,A139506, k=27 A139507, k=28 A139508, k=29 A139509, k=30 A139510, k=31 A139511, k=32 A139512

Crossrefs

Programs

  • Mathematica
    a = {}; w = 9; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
Showing 1-4 of 4 results.