cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A141184 Duplicate of A033212.

Original entry on oeis.org

19, 31, 61, 79, 109, 139, 151, 181, 199, 211, 229, 241, 271, 331
Offset: 1

Views

Author

Keywords

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A068228 Primes congruent to 1 (mod 12).

Original entry on oeis.org

13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 457, 541, 577, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 937, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297
Offset: 1

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

Keywords

Comments

This has several equivalent definitions (cf. the Tunnell link)
Also primes of the form x^2 + 9y^2 (discriminant -36). - T. D. Noe, May 07 2005 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 - 12y^2 (discriminant 48). Cf. A140633. - T. D. Noe, May 19 2008 [corrected by Klaus Purath, Jan 18 2023]
Also primes of the form x^2 + 4*x*y + y^2.
Also primes of the form x^2 + 2*x*y - 2*y^2 (cf. A084916).
Also primes of the form x^2 + 6*x*y - 3*y^2.
Also primes of the form 4*x^2 + 8*x*y + y^2.
Also primes of the form u^2 - 3v^2 (use the transformation {u,v} = {x+2y,y}). - Tito Piezas III, Dec 28 2008
Sequence lists generalized cuban primes (A007645) that are the sum of 2 nonzero squares. - Altug Alkan, Nov 25 2015
Yasutoshi Kohmoto observes that prevprime(a(n)) is more frequently congruent to 3 (mod 4) than to 1. This bias can be explained by the possible prime constellations and gaps: To have the same residue mod 4 as a prime in the list, the previous prime must be at a gap of 4 or 8 or 12 ..., but a gap of 4 is impossible because 12k + 1 - 4 is divisible by 3, and gaps >= 12 are very rare for small primes. To have the residue 3 (mod 4) the previous prime can be at a gap of 2 or 6 with no a priori divisibility property. However, this bias tends to disappear as the primes (and average prime gaps) grow bigger: for primes < 10^5, the ratio is about 35% vs. 65% as the above simple explanation suggests, but considering primes up to 10^8 yields a ratio of about 41% vs. 59%. It can be expected that the ratio asymptotically tends to 1:1. - M. F. Hasler, Sep 01 2017
Also primes of the form x^2 - 27*y^2. - Klaus Purath, Jan 18 2023

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Subsequence of A084916.
Subsequence of A007645.
Also primes in A084916, A020672.
Cf. A141123 (d=12), A141111, A141112 (d=65), A141187 (d=48) A038872 (d=5), A038873 (d=8), A038883 (d=13), A038889 (d=17).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Magma
    [p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012
    For other programs see the "Binary Quadratic Forms and OEIS" link.
  • Maple
    select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
  • Mathematica
    Select[Prime/@Range[250], Mod[ #, 12]==1&]
    Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
  • PARI
    for(i=1,250, if(prime(i)%12==1, print(prime(i))))
    
  • PARI
    forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
    

Extensions

Edited by Dean Hickerson, Feb 27 2002
Entry revised by N. J. A. Sloane, Oct 18 2014 (Edited, merged with A141122, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008).

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A191018 Primes p with Jacobi symbol (p|3*5) = 1.

Original entry on oeis.org

2, 17, 19, 23, 31, 47, 53, 61, 79, 83, 107, 109, 113, 137, 139, 151, 167, 173, 181, 197, 199, 211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 557, 563, 571, 587, 593, 601, 617, 619, 631
Offset: 1

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes that are squares mod 15", which is the subsequence A033212. The present sequence also includes primes which are not square mod 3 neither mod 5, i.e., with Legendre symbols (p|3) = (p|5) = -1. - David Broadhurst and M. F. Hasler, Jan 15 2016
Primes congruent to {1, 2, 4, 8} mod 15. - Wolfdieter Lang, May 19 2021

Crossrefs

Cf. A316569.
Primes of A341786, except 3 and 5.

Programs

  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,15]==1&]
  • PARI
    is(p)=kronecker(p,15)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Name corrected upon suggestion from David Broadhurst by M. F. Hasler, Jan 15 2016

A139490 Numbers n such that the quadratic form x^2 + n*x*y + y^2 represents exactly the same primes as the quadratic form x^2 + m*y^2 for some m.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 14, 16, 18, 22, 26, 38, 58, 82, 86
Offset: 1

Author

Artur Jasinski, Apr 24 2008, Apr 26 2008, Apr 27 2008

Keywords

Comments

For the numbers m see A139491.
Conjecture: This sequence is finite and complete (checked for range n<=200 and m<=500).
Three more terms were found by searching n <= 1000 and m <= 4000. The corresponding m are 840, 840, and 1848, which are idoneal numbers A000926. The sequence is probably complete now. [T. D. Noe, Apr 27 2009]

Examples

			a(1)=1 because the primes represented by x^2+xy+y^2 are the same as the primes represented by x^2 + 3*y^2 (see A007645).
The known pairs (n,m) are the following (checked for range n<=200 and m<=500):
n={1, 4, 4, 6, 6, 7, 8, 8, 10, 10, 10, 14, 14, 14, 16, 18, 22, 22, 26, 38, 38}
m={3, 9, 12, 8, 16, 15, 45, 60, 24, 48, 72, 24, 48, 72, 21, 40, 120, 240, 168, 120, 240}.
		

Programs

  • Mathematica
    f = 200; g = 300; h = 30; j = 100; b = {}; Do[a = {}; Do[Do[If[PrimeQ[x^2 + n y^2], AppendTo[a, x^2 + n y^2]], {x, 0, g}], {y, 1, g}]; AppendTo[b, Take[Union[a], h]], {n, 1, f}]; Print[b]; c = {}; Do[a = {}; Do[Do[If[PrimeQ[n^2 + w*n*m + m^2], AppendTo[a, n^2 + w*n*m + m^2]], {n, m, g}], {m, 1, g}]; AppendTo[c, Take[Union[a], h]], {w, 1, j}]; Print[c]; bb = {}; cc = {}; Do[Do[If[b[[p]] == c[[q]], AppendTo[bb, p]; AppendTo[cc, q]], {p, 1, f}], {q, 1, j}]; Union[cc] (*Artur Jasinski*)

Extensions

Edited by N. J. A. Sloane, Apr 25 2008
Extended by T. D. Noe, Apr 27 2009
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A191023 Primes p which have Kronecker symbol (p|30) = 1.

Original entry on oeis.org

11, 13, 17, 23, 29, 31, 37, 43, 47, 59, 67, 79, 101, 113, 131, 137, 149, 151, 157, 163, 167, 179, 199, 233, 241, 251, 257, 263, 269, 271, 277, 283, 307, 353, 373, 383, 389, 397, 409, 419, 439, 461, 491, 503, 509, 523, 547, 593, 601, 613, 617, 631, 643, 647
Offset: 1

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 30)", which is sequence A033212. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 30) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,30]==1&]
  • PARI
    is(n)=isprime(n) && kronecker(n,30)==1 \\ Charles R Greathouse IV, Jul 12 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A341786 Norms of prime ideals in Z[(1+sqrt(-15))/2], the ring of integers of Q(sqrt(-15)).

Original entry on oeis.org

2, 3, 5, 17, 19, 23, 31, 47, 49, 53, 61, 79, 83, 107, 109, 113, 121, 137, 139, 151, 167, 169, 173, 181, 197, 199, 211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 557, 563, 571, 587
Offset: 1

Author

Jianing Song, Feb 19 2021

Keywords

Comments

The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Note that Z[(1+sqrt(-15))/2] has class number 2.
Consists of the primes congruent to 1, 2, 3, 4, 5, 8 modulo 15 and the squares of primes congruent to 7, 11, 13, 14 modulo 15.
For primes p == 1, 4 (mod 15), there are two distinct ideals with norm p in Z[(1+sqrt(-15))/2], namely (x + y*(1+sqrt(-15))/2) and (x + y*(1-sqrt(-15))/2), where (x,y) is a solution to x^2 + x*y + 4*y^2 = p; for p == 2, 8 (mod 15), there are also two distinct ideals with norm p, namely (p, x + y*(1+sqrt(-15))/2) and (p, x + y*(1-sqrt(-15))/2), where (x,y) is a solution to x^2 + x*y + 4*y^2 = p^2 with y != 0; (3, sqrt(-15)) and (5, sqrt(-15)) are respectively the unique ideal with norm 3 and 5; for p == 7, 11, 13, 14 (mod 15), (p) is the only ideal with norm p^2.

Examples

			Let |I| be the norm of an ideal I, then:
|(2, (1+sqrt(-15))/2)| = |(2, (1-sqrt(-15))/2)| = 2;
|(3, sqrt(-15))| = 3;
|(5, sqrt(-15))| = 5;
|(17, 7+4*sqrt(-15))| = |(17, 7-4*sqrt(-15))| = 17;
|(2 + sqrt(-15))| = |(2 - sqrt(-15))| = 19;
|(23, 17+4*sqrt(-15))| = |(23, 17-4*sqrt(-15))| = 23;
|(4 + sqrt(-15))| = |(4 - sqrt(-15))| = 31.
		

Crossrefs

The number of distinct ideals with norm n is given by A035175.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), this sequence (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341786(n) = my(disc=-15); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A106859 Primes of the form 2x^2 + xy + 2y^2.

Original entry on oeis.org

2, 3, 5, 17, 23, 47, 53, 83, 107, 113, 137, 167, 173, 197, 227, 233, 257, 263, 293, 317, 347, 353, 383, 443, 467, 503, 557, 563, 587, 593, 617, 647, 653, 677, 683, 743, 773, 797, 827, 857, 863, 887, 947, 953, 977, 983, 1013, 1097, 1103, 1163, 1187, 1193
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-15.
If p is a prime >= 17 in this sequence then k==0 (mod 4) for all k satisfying "B(2k)(p^k-1) is an integer" where B are the Bernoulli numbers. - Benoit Cloitre, Nov 14 2005
Equals {2, 3, 5 and primes congruent to 17, 23 (mod 30)}; see A039949 and A132235. Except for 2, the same as primes of the form 3x^2 + 5y^2, which has discriminant -60. - T. D. Noe, May 02 2008
Equals {3, 5 and primes congruent to 2, 8 (mod 15)} sorted; see A033212. This form is in the only non-principal class (respectively, genus) for fundamental discriminant -15. - Rick L. Shepherd, Jul 25 2014 [See A343241 for the 2, 8 (mod 15) primes.]
From Wolfdieter Lang, Jun 08 2021: (Start)
Regarding the above comment of T. D. Noe on the form [3, 0, 5]: the class number h(-60) = 2 = A000003(15), and [1, 0, 15] is the principal reduced form, representing the primes given in A033212.
The form [3, 0, 5] represents the proper equivalence class of the second genus of forms of discriminant Disc = -60. The Legendre symbol for the odd primes, not 3 or 5, satisfy L(-3|p) = -1 and L(5|p) = -1, leading to primes p == {17, 23, 47, 53} (mod 60). See the Buell reference, p. 52, for the two characters L(p|3) and L(p|5). The prime 2 is represented by the imprimitive reduced form [2, 2, 8] of Disc = -60. (End)

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 51-52.

Programs

  • Mathematica
    QuadPrimes2[2, 1, 2, 100000] (* see A106856 *)
  • PARI
    { fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate();
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p)));
    print(t1);
    }
    fc(2,1,2,1000); \\ N. J. A. Sloane, Jun 06 2014

Extensions

Removed defective Mma program and extended the b-file using the PARI program fc. - N. J. A. Sloane, Jun 06 2014
Showing 1-10 of 41 results. Next