cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 114 results. Next

A141122 Duplicate of A068228.

Original entry on oeis.org

13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337
Offset: 1

Views

Author

Keywords

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A007519 Primes of form 8n+1, that is, primes congruent to 1 mod 8.

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321, 1361
Offset: 1

Keywords

Comments

Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Integers n (n > 9) of form 4k + 1 such that binomial(n-1, (n-1)/4) == 1 (mod n) - Benoit Cloitre, Feb 07 2004
Primes of the form x^2 + 8y^2. - T. D. Noe, May 07 2005
Also primes of the form x^2 + 16y^2. See A140633. - T. D. Noe, May 19 2008
Is this the same sequence as A141174?
Being a subset of A001132 and also a subset of A038873, this is also a subset of the primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
These primes p are only which possess the property: for every integer m from interval [0, p) with the Hamming distance D(m, p) = 2, there exists an integer h from (m, p) with D(m, h) = 2. - Vladimir Shevelev, Apr 18 2012
Primes p such that p XOR 6 = p + 6. - Brad Clardy, Jul 22 2012
Odd primes p such that -1 is a 4th power mod p. - Eric M. Schmidt, Mar 27 2014
There are infinitely many primes of this form. See Brubaker link. - Alonso del Arte, Jan 12 2017
These primes split in Z[sqrt(2)]. For example, 17 = (-1)(1 - 3*sqrt(2))(1 + 3*sqrt(2)). This is also true of primes of the form 8n - 1. - Alonso del Arte, Jan 26 2017

Examples

			a(1) = 17 = 2 * 8 + 1 = (10001)_2. All numbers m from [0, 17) with the Hamming distance D(m, 17) = 2 are 0, 3, 5, 9. For m = 0, we can take h = 3, since 3 is drawn from (0, 17) and D(0, 3) = 2; for m = 3, we can take h = 5, since 5 from (3, 17) and D(3, 5) = 2; for m = 5, we can take h = 6, since 6 from (5, 17) and D(5, 6) = 2; for m = 9, we can take h = 10, since 10 is drawn from (9, 17) and D(9, 10) = 2. - _Vladimir Shevelev_, Apr 18 2012
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

Subsequence of A017077 and of A038873.
Cf. A139643. Complement in primes of A154264. Cf. A042987.
Cf. A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).
Cf. also A242663.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Haskell
    a007519 n = a007519_list !! (n-1)
    a007519_list = filter ((== 1) . a010051) [1,9..]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 1 ]; // Vincenzo Librandi, Aug 21 2012
    
  • Mathematica
    Select[1 + 8 Range@ 170, PrimeQ] (* Robert G. Wilson v *)
  • PARI
    forprime(p=2,1e4,if(p%8==1,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    forprimestep(p=17,10^4,8, print1(p", ")) \\ Charles R Greathouse IV, Jul 17 2024
    
  • PARI
    lista(nn)= my(vpr = []); for (x = 0, nn, y = 0; while ((v = x^2+6*x*y+y^2) < nn, if (isprime(v), if (! vecsearch(vpr, v), vpr = concat(vpr, v); vpr = vecsort(vpr););); y++;);); vpr; \\ Michel Marcus, Feb 01 2014
    
  • PARI
    A007519_upto(N, start=1)=select(t->t%8==1,primes([start,N]))
    #A7519=A007519_upto(10^5)
    A007519(n)={while(#A7519A007519_upto(N*3\2, N+1))); A7519[n]} \\ M. F. Hasler, May 22 2025
    
  • SageMath
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 4, -4])
    print(Q.represented_positives(1361, 'prime'))  # Peter Luschny, Jan 26 2017

A007522 Primes of the form 8n+7, that is, primes congruent to -1 mod 8.

Original entry on oeis.org

7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1151
Offset: 1

Keywords

Comments

Primes that are the sum of no fewer than four positive squares.
Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Primes p such that x^4 = 2 has just two solutions mod p. Subsequence of A040098. Solutions mod p are represented by integers from 0 to p - 1. For p > 2, i is a solution mod p of x^4 = 2 if and only if p - i is a solution mod p of x^4 = 2, so the sum of the two solutions is p. The solutions are given in A065907 and A065908. - Klaus Brockhaus, Nov 28 2001
As this is a subset of A001132, this is also a subset of the primes of form x^2 - 2y^2. And as this is also a subset of A038873, this is also a subset of the primes of form x^2 - 2y^2. - Tito Piezas III, Dec 28 2008
Subsequence of A141164. - Reinhard Zumkeller, Mar 26 2011
Also a subsequence of primes of the form x^2 + y^2 + z^2 + 1. - Arkadiusz Wesolowski, Apr 05 2012
Primes p such that p XOR 6 = p - 6. - Brad Clardy, Jul 22 2012

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Subsequence of A004771.
Cf. A141174 (d = 32). A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).

Programs

  • Haskell
    a007522 n = a007522_list !! (n-1)
    a007522_list = filter ((== 1) . a010051) a004771_list
    -- Reinhard Zumkeller, Jan 29 2013
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 7]; // Vincenzo Librandi, Jun 26 2014
  • Maple
    select(isprime, [seq(i,i=7..10000,8)]); # Robert Israel, Nov 22 2016
  • Mathematica
    Select[8Range[200] - 1, PrimeQ] (* Alonso del Arte, Nov 07 2016 *)
  • PARI
    (A007522(m) = local(p, s, x, z); forprime(p = 3, m, s = []; for(x = 0, p-1, if(x^4%p == 2%p, s = concat(s, [x]))); z = matsize(s)[2]; if(z == 2, print1(p, ", ")))); A007522(1400)  \\ Does not return a(m) but prints all terms <= m. - Edited to make it executable by M. F. Hasler, May 22 2025.
    
  • PARI
    A007522_upto(N, start=1)=select(p->p%8==7, primes([start, N]))
    #A7522=A007522_upto(10^5)
    A007522(n)={while(#A7522A007522_upto(N*3\2, N+1))); A7522[n]} \\ M. F. Hasler, May 22 2025
    

Formula

Equals A000040 INTERSECT A004215. - R. J. Mathar, Nov 22 2006
a(n) = 7 + A139487(n)*8, n >= 1. - Wolfdieter Lang, Feb 18 2015

A038872 Primes congruent to {0, 1, 4} mod 5.

Original entry on oeis.org

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Keywords

Comments

Also odd primes p such that 5 is a square mod p: (5/p) = +1 for p > 5.
Primes of the form x^2 + x*y - y^2 (as well as of the form x^2 + 3*x*y + y^2), both with discriminant = 5 and class number = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1. [This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales, Jun 06 2008. R. J. Mathar proved on Jul 22 2008 that this coincides with the present sequence.]
Also primes of the form 5x^2 - y^2 (cf. A031363). - N. J. A. Sloane, May 30 2014
Also primes of the form x^2 + 4*x*y - y^2. Every binary quadratic primitive form of discriminant 20 or 5 has proper solutions for positive integers N given in A089270, including the present primes. Proof from computing the corresponding representative parallel primitive forms, which leads to x^2 - 5 == 0 (mod N) or x^2 + x - 1 == 0 (mod N) which have solutions precisely for these positive N values, including these primes. - Wolfdieter Lang, Jun 19 2019
For a Pythagorean triple a, b, c, these primes (and 2) are the possible prime factors of 2a + b, |2a - b|, 2b + a, and 2b - a. - J. Lowell, Nov 05 2011
The prime factors of A028387(n^2+3n+1). - Richard R. Forberg, Dec 12 2014
Except for p = 5, these are primes p that divide Fibonacci(p-1). - Dmitry Kamenetsky, Jul 27 2015
Apart from the first term, these are rational primes that decompose in the field Q[sqrt(5)]. For example, 11 = ((7 + sqrt(5))/2)*((7 - sqrt(5))/2), 19 = ((9 + sqrt(5))/2)*((9 - sqrt(5))/2). - Jianing Song, Nov 23 2018
The possible prime factors of x^2 - x - 1. - Charles R Greathouse IV, Mar 18 2022

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5); A038873 (d=8); A068228, A141123 (d=12); A038883 (d=13). A038889 (d=17); A141111, A141112 (d=65).
Cf. A003631 (complement with respect to A000040).

Programs

  • GAP
    Filtered(Concatenation([5],Flat(List([1..140],k->[5*k-1,5*k+1]))),IsPrime); # Muniru A Asiru, Nov 24 2018
  • Magma
    [ p: p in PrimesUpTo(700) | p mod 5 in {0,1,4}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    select(isprime, [5, seq(op([5*k-1,5*k+1]),k=1..1000)]); # Robert Israel, Dec 22 2014
  • Mathematica
    Join[{5}, Select[Prime[Range[4, 100]], Mod[#, 5] == 1 || Mod[#, 5] == 4 &]] (* Alonso del Arte, Nov 27 2011 *)
  • PARI
    forprime(p=2,1e3,if(kronecker(5,p)>=0,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A045468(n-1) for n > 1. - Robert Israel, Dec 22 2014
a(n) ~ 2n*log(n). - Charles R Greathouse IV, Nov 29 2016

Extensions

Corrected and extended by Peter K. Pearson, May 29 2005
Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A038883 Odd primes p such that 13 is a square mod p.

Original entry on oeis.org

3, 13, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
Offset: 1

Keywords

Comments

Equivalently, by quadratic reciprocity (since 13 == 1 (mod 4)), primes p which are squares mod 13.
The squares mod 13 are 0, 1, 4, 9, 3, 12 and 10.
Also primes of the form x^2 + 3*x*y - y^2. Discriminant = 13. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Primes p such that x^2 + x = 3 has a solution mod p (the solutions over the reals are (-1+-sqrt(13))/2). - Joerg Arndt, Jul 27 2011

Examples

			13 == 1 (mod 3) and 1 is a square, so 3 is on the list.
101 is prime and congruent to 7^2 = 49 == 10 (mod 13), so 101 is on the list.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (primes p such that d=13 is a square mod p). A038889 (d=17). A141111, A141112 (d=65).
Cf. A296937.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[ Prime@ Range@ 118, JacobiSymbol[ #, 13] > -1 &] (* Robert G. Wilson v, May 16 2008 *)
    Select[Flatten[Table[13n + {1, 3, 4, 9, 10, 12}, {n, 50}]], PrimeQ[#] &] (* Alonso del Arte, Sep 16 2012 *)
  • PARI
    forprime(p=3,1e3,if(issquare(Mod(13,p)),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    select( {is_A038883(n)=bittest(5659,n%13)&&isprime(n)}, [0..666]) \\ M. F. Hasler, Feb 17 2022
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 3, -1])
    print(Q.represented_positives(641, 'prime')) # Peter Luschny, Sep 20 2018

Formula

A000040 \ A120330 U {13}: Complement of A120330 in the primes, and 13. - M. F. Hasler, Feb 17 2022

Extensions

Edited by N. J. A. Sloane, Apr 27 2008, Jul 28 2008

A051222 Numbers k such that Bernoulli number B_{k} has denominator 6.

Original entry on oeis.org

2, 14, 26, 34, 38, 62, 74, 86, 94, 98, 118, 122, 134, 142, 146, 158, 182, 194, 202, 206, 214, 218, 254, 266, 274, 278, 298, 302, 314, 326, 334, 338, 362, 386, 394, 398, 422, 434, 446, 454, 458, 482, 494, 514, 518, 526, 538, 542, 554, 566, 578
Offset: 1

Keywords

Comments

Alternative definition: let D(m) = set of divisors of m; sequence gives n such that the set 1 + D(n) contains only two primes, 2 and 3. E.g., n=98: D(98)={1,2,7,15,49,98}, 1+D = {2,3,8,16,50,99} of which only 2 terms are prime numbers: {2,3}. Observation by Labos Elemer, Jun 24 2002. This is a consequence of the von Staudt-Clausen theorem. - N. J. A. Sloane, Jan 04 2004
The fraction of Bernoulli numbers with denominator 6 is roughly 1/6, see Erdős-Wagstaff. But calculations by H. Cohen and G. Tenenbaum suggest that the fraction is closer to 1/7 (posting to Number Theory List around Dec 20 2005).
Simon Plouffe reports (Feb 13 2007) that at B_{9083002} the proportion is 0.151848915149418661363281... and still decreasing very slowly.
In his PhD thesis at the University of Illinois (see reference), Richard Sunseri proved that a higher proportion of Bernoulli denominators equal 6 than any other value.
Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018
Conjecture: When the expression (p+q^b)/2 is required to be prime, p is prime, and q is a prime >=5, then all p values are prime congruent to 1 (mod 12) (A068228), if and only if the exponent b is a member of this set. - Richard R. Forberg, Apr 07 2025
There are additional exponential expressions conjectured for generating each of several known prime subsequences (e.g., Pythagorean primes, A002144) where the sequence is invariant to the exponent, if and only if the exponent is a member of this set. See Forberg link. - Richard R. Forberg, Apr 25 2025

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, CRC Press, 2005, Sect. 3.9.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 10.

Crossrefs

Except for 2, all terms are even nontotient numbers. Proper subset of A005277: e.g., 50 and 90 are not here. - Labos Elemer
A112772 is a subsequence. - Bernd C. Kellner, Mar 21 2018

Programs

  • Mathematica
    di[x_] := Divisors[x]
    dp[x_] := Part[di[x], Flatten[Position[PrimeQ[1+di[x]], True]]]+1
    Do[s=Length[dp[n]]; If[Equal[s, 2], Print[n]], {n, 1, 10000}] (* Labos Elemer *)
    Do[s=Denominator[BernoulliB[n]]; If[Equal[s, 6], Print[n]], {n, 1, 1000}] (* Labos Elemer *)
    Do[s=1+Divisors[n];s1=Flatten[Position[PrimeQ[s], True]]; (*analogous [suitably modified] pairs of programs yield A051225-A051230*) s2=Part[s, s1];If[Equal[s2, {2, 3}], Print[n]], {n, 1, 100}] (* Labos Elemer *)
    Select[Range[600],Denominator[BernoulliB[#]]==6&] (* Harvey P. Dale, Dec 08 2011 *)
  • PARI
    for(n=1,10^3,if(denominator(bernfrac(n))==6,print1(n,", "))); \\ Joerg Arndt, Oct 28 2014
    
  • PARI
    is(n)=if(n%2,return(0)); fordiv(n/2,d,if(isprime(2*d+1)&&d>1, return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Additional comments and references from Sam Wagstaff, Dec 20 2005

A033212 Primes congruent to 1 or 19 (mod 30).

Original entry on oeis.org

19, 31, 61, 79, 109, 139, 151, 181, 199, 211, 229, 241, 271, 331, 349, 379, 409, 421, 439, 499, 541, 571, 601, 619, 631, 661, 691, 709, 739, 751, 769, 811, 829, 859, 919, 991, 1009, 1021, 1039, 1051, 1069, 1129, 1171, 1201, 1231, 1249, 1279, 1291, 1321, 1381
Offset: 1

Keywords

Comments

Theorem: Same as primes of the form x^2+15*y^2 (discriminant -60). Proof: Cox, Cor. 2.27, p. 36.
Equivalently, primes congruent to 1 or 4 (mod 15). Also x^2+xy+4y^2 is the principal form of (fundamental) discriminant -15. The only other class for -15 contains the form 2x^2+xy+2y^2 (A106859), in the other genus. - Rick L. Shepherd, Jul 25 2014
Three further theorems (these were originally stated as conjectures, but are now known to be theorems, thanks to the work of J. B. Tunnell - see link):
1. The same as primes of the form x^2-xy+4y^2 (discriminant -15) and x^2-xy+19y^2 (discriminant -75), both with x and y nonnegative. - T. D. Noe, Apr 29 2008
2. The same as primes of the form x^2+xy+19y^2 (discriminant -75), with x and y nonnegative. - T. D. Noe, Apr 29 2008
3. The same as primes of the form x^2+5xy-5y^2 (discriminant 45). - N. J. A. Sloane, Jun 01 2014
Also primes of the form x^2+7*x*y+y^2 (discriminant 45).
Lemma (Will Jagy, Jun 12 2014): If c is any (positive or negative) even number, then x^2 + x y + c y^2 and x^2 + (4 c - 1) y^2 represent the same odd numbers.
Proof: x (x + y) + c y^2 = odd, therefore x is odd, x + y odd, so y is even. Let y = 2 t. Then x( x + 2 t) + 4 c t^2 = x^2 + 2 x t + 4 c t^2 = (x+t)^2 + (4c-1) t^2 = odd. QED With c = 4, neither one represents 2, so x^2+15y^2 and x^2+xy+4y^2 represent the same primes.
Also, primes which are squares (mod 3*5). Subsequence of A191018. - David Broadhurst and M. F. Hasler, Jan 15 2016

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Primes in A243173 and in A243174.
Cf. A141785 (d=45), A033212 (Primes of form x^2+15*y^2), A038872(d=5), A038873 (d=8), A068228, A141123 (d=12), A038883 (d=13), A038889 (d=17), A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 15, 10000] (* see A106856 *)
    Select[Prime@Range[250], MemberQ[{1, 19}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    select(n->n%30==1||n%30==19, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    
  • PARI
    is(p)=issquare(Mod(p,15))&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

Extensions

Edited by N. J. A. Sloane, Jun 01 2014 and Oct 18 2014: added Tunnell document, revised entry, merged with A141184. The latter entry was submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008.
Typo in crossrefs fixed by Colin Barker, Apr 05 2015
Showing 1-10 of 114 results. Next