cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A045979 Bernoulli number B_{2n} has denominator 6.

Original entry on oeis.org

1, 7, 13, 17, 19, 31, 37, 43, 47, 49, 59, 61, 67, 71, 73, 79, 91, 97, 101, 103, 107, 109, 127, 133, 137, 139, 149, 151, 157, 163, 167, 169, 181, 193, 197, 199, 211, 217, 223, 227, 229, 241, 247, 257, 259, 263, 269, 271, 277, 283, 289
Offset: 1

Views

Author

Keywords

Comments

All primes in A053176 are in the sequence. If n is in the sequence, its factorization contains only primes in A053176. - Benoit Cloitre, Oct 19 2002
B(2n) has denominator 6 iff (n^2-1)*B(2n) is an integer. - Benoit Cloitre, Feb 15 2004
Subsequence of A156543. - Reinhard Zumkeller, Feb 10 2009

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 76.

Crossrefs

Programs

Formula

a(n) seems to be asymptotic to c*n, 5 < c < 6. - Benoit Cloitre, Oct 19 2002

A051225 Numbers m such that the Bernoulli number B_{2*m} has denominator 30.

Original entry on oeis.org

2, 4, 34, 38, 62, 76, 94, 118, 122, 124, 142, 188, 202, 206, 214, 218, 236, 244, 274, 298, 302, 314, 334, 362, 394, 412, 422, 436, 446, 454, 458, 482, 514, 526, 538, 542, 566, 578, 604, 622, 626, 628, 634, 662, 668, 674, 694, 698, 706, 722, 724, 734, 758
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 2, 4, 34 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = A051226(n)/2. - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051230 Numbers m such that the Bernoulli number B_m has denominator 66.

Original entry on oeis.org

10, 50, 170, 370, 470, 590, 610, 670, 710, 730, 790, 850, 1010, 1070, 1270, 1370, 1390, 1490, 1630, 1670, 1850, 1970, 1990, 2230, 2270, 2290, 2570, 2630, 2690, 2770, 2830, 2890, 2950, 3050, 3070, 3110, 3130, 3170, 3310, 3350, 3470, 3530
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

  • Mathematica
    denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *)
    Flatten[Position[BernoulliB[Range[4000]],?(Denominator[#]==66&)]] (* _Harvey P. Dale, Nov 17 2014 *)
  • PARI
    /* define indicator function */ a(n)=local(s); s=0; fordiv(n,d,s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45,n,0); m=0; forstep(n=10,4000,10, if(a(n),an[ m++ ]=n)); for(n=1,42,print1(an[ n ]","))

Extensions

More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020

A051229 Numbers m such that the Bernoulli number B_{2*m} has denominator 66.

Original entry on oeis.org

5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, 745, 815, 835, 925, 985, 995, 1115, 1135, 1145, 1285, 1315, 1345, 1385, 1415, 1445, 1475, 1525, 1535, 1555, 1565, 1585, 1655, 1675, 1735, 1765
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 5, 25 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],Denominator[BernoulliB[2 #]]==66&] (* Harvey P. Dale, Mar 11 2012 *)
  • PARI
    is(n)=denominator(bernfrac(2*n))==66 \\ Charles R Greathouse IV, Feb 06 2017
    
  • Sage
    [n for n in (1..2000) if denominator(bernoulli(2*n))==66 ] # G. C. Greubel, Jun 06 2020

Formula

a(n) = 5*A119456(n). - G. C. Greubel, Jun 06 2020

Extensions

More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020

A051226 Numbers m such that the Bernoulli number B_m has denominator 30.

Original entry on oeis.org

4, 8, 68, 76, 124, 152, 188, 236, 244, 248, 284, 376, 404, 412, 428, 436, 472, 488, 548, 596, 604, 628, 668, 724, 788, 824, 844, 872, 892, 908, 916, 964, 1028, 1052, 1076, 1084, 1132, 1156, 1208, 1244, 1252, 1256, 1268, 1324, 1336, 1348, 1388
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 4, 8, 68 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = 2*A051225(n). - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051227 Numbers m such that the Bernoulli number B_{2*m} has denominator 42.

Original entry on oeis.org

3, 57, 93, 129, 177, 201, 213, 237, 291, 327, 381, 417, 447, 471, 489, 501, 579, 591, 597, 633, 669, 681, 687, 807, 921, 951, 1011, 1047, 1059, 1083, 1137, 1149, 1167, 1203, 1227, 1263, 1299, 1317, 1347, 1371, 1389, 1437, 1461, 1497, 1563, 1569
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = A051228(n)/2. - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051228 Numbers m such that the Bernoulli number B_m has denominator 42.

Original entry on oeis.org

6, 114, 186, 258, 354, 402, 426, 474, 582, 654, 762, 834, 894, 942, 978, 1002, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1614, 1842, 1902, 2022, 2094, 2118, 2166, 2274, 2298, 2334, 2406, 2454, 2526, 2598, 2634, 2694, 2742, 2778, 2874, 2922, 2994, 3126
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

Formula

a(n) = 2*A051227(n). - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A249134 Numbers k such that Bernoulli number B_k has denominator 2730.

Original entry on oeis.org

12, 24, 1308, 1884, 2004, 2364, 2532, 2724, 3804, 4008, 4044, 4188, 4236, 4668, 5052, 5064, 5268, 5388, 5484, 6252, 6492, 6564, 6756, 6852, 7044, 7188, 7356, 7404, 7608, 7764, 8124, 8412, 8472, 8796, 9084, 9228, 9852, 9876, 9924
Offset: 1

Views

Author

Keywords

Comments

2730 = 2 * 3 * 5 * 7 * 13.

Examples

			BernoulliB(12) is -691/2730, hence 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 10^4, n = n+12, If[Denominator[BernoulliB[n]] == 2730, Print[n]; Sow[n]]]][[2, 1]]
    Select[Table[n, {n, 2, 10000}], Denominator@BernoulliB[#]==2730 &] (* Vincenzo Librandi, Apr 02 2015 *)
  • PARI
    is(n)=denominator(bernfrac(n))==2730 \\ Charles R Greathouse IV, Oct 22 2014
    
  • PARI
    is(n)=if(n%12 || n%16==0 || n%9==0, return(0)); forprime(p=5,107, if(n%p==0, return(0))); fordiv(n,d, if(isprime(d+1) && d>13, return(0))); 1 \\ Charles R Greathouse IV, Oct 22 2014

A119480 Numbers n such that the Bernoulli number B_{4n} has denominator 30.

Original entry on oeis.org

1, 2, 17, 19, 31, 38, 47, 59, 61, 62, 71, 94, 101, 103, 107, 109, 118, 122, 137, 149, 151, 157, 167, 181, 197, 206, 211, 218, 223, 227, 229, 241, 257, 263, 269, 271, 283, 289, 302, 311, 313, 314, 317, 331, 334, 337, 347, 349, 353, 361, 362, 367, 379
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Most a(n) are primes from A043297(n) except for a(1) = 1 and composite a(n) for n=6,10,12,17,18,26,28,38,39,42,45,50,51, ... a(6) = 38 = 2*19, a(10) = 62 = 2*31, a(12) = 94 = 2*47, a(17) = 118 = 2*59, a(18) = 122 = 2*61, a(26) = 206 = 2*103, a(28) = 218 = 2*109, a(38) = 289 = 17*17, a(39) = 302 = 2*151, a(42) = 314 = 2*157, a(45) = 334 = 2*167, a(50) = 361 = 19*19, a(51) = 362 = 2*181, ... It appears that most composite a(n) are the doubles of some primes from A043297(n) belonging to A081092[n] and A045404[n] - Primes congruent to {3, 4, 5, 6} mod 7. The rest of composite a(n) are the squares of the primes from A043297(n).
Some a(n) are the products of different primes from A043297(n), for example a(77) = 527 = 17*31. a(n) belong to A045402 Primes congruent to {1, 3, 4, 5, 6} mod 7. a(n) is a subset of A053176 Primes p such that 2p+1 is composite, A045979 Bernoulli number B_{2n} has denominator 6, A090863 Numbers n such that F(n+1)*F(n-1)*B(2n) is an integer, where F(k)=k-th Fibonacci number and B(2k)=2k-th Bernoulli number. - Alexander Adamchuk, Jul 27 2006

Crossrefs

Programs

  • Mathematica
    Select[Range@ 400, Denominator@ BernoulliB[4 #] == 30 &] (* Michael De Vlieger, Aug 09 2017 *)

Formula

a(n) = A051225[n]/2.

A067513 Number of divisors d of n such that d+1 is prime.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Comments

1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022

Examples

			a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
		

Crossrefs

Even-indexed terms give A046886.
Cf. A005408 (positions of 1's), A051222 (of 2's).

Programs

  • Haskell
    a067513 = sum . map (a010051 . (+ 1)) . a027750_row
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Maple
    A067513 := proc(n)
        local a,d;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isprime(d+1) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A067513(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
    Table[Count[Divisors[n],?(PrimeQ[#+1]&)],{n,110}] (* _Harvey P. Dale, Feb 29 2012 *)
    a[n_] := DivisorSum[n, 1 &, PrimeQ[# + 1] &]; Array[a, 100] (* Amiram Eldar, Jan 11 2025 *)
  • PARI
    a(n)=sumdiv(n,d,isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
    
  • Python
    from sympy import divisors, isprime
    def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
    print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022

Formula

a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011
a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1). - Reinhard Zumkeller, Jul 31 2012
a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022
Sum_{k=1..n} a(k) = n * (log(log(n)) + B) + O(n/log(n)), where B is a constant (Prachar, 1955). - Amiram Eldar, Jan 11 2025

Extensions

Edited by Dean Hickerson, Feb 12 2002
Showing 1-10 of 42 results. Next