cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A051225 Numbers m such that the Bernoulli number B_{2*m} has denominator 30.

Original entry on oeis.org

2, 4, 34, 38, 62, 76, 94, 118, 122, 124, 142, 188, 202, 206, 214, 218, 236, 244, 274, 298, 302, 314, 334, 362, 394, 412, 422, 436, 446, 454, 458, 482, 514, 526, 538, 542, 566, 578, 604, 622, 626, 628, 634, 662, 668, 674, 694, 698, 706, 722, 724, 734, 758
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 2, 4, 34 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = A051226(n)/2. - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051230 Numbers m such that the Bernoulli number B_m has denominator 66.

Original entry on oeis.org

10, 50, 170, 370, 470, 590, 610, 670, 710, 730, 790, 850, 1010, 1070, 1270, 1370, 1390, 1490, 1630, 1670, 1850, 1970, 1990, 2230, 2270, 2290, 2570, 2630, 2690, 2770, 2830, 2890, 2950, 3050, 3070, 3110, 3130, 3170, 3310, 3350, 3470, 3530
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

  • Mathematica
    denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *)
    Flatten[Position[BernoulliB[Range[4000]],?(Denominator[#]==66&)]] (* _Harvey P. Dale, Nov 17 2014 *)
  • PARI
    /* define indicator function */ a(n)=local(s); s=0; fordiv(n,d,s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45,n,0); m=0; forstep(n=10,4000,10, if(a(n),an[ m++ ]=n)); for(n=1,42,print1(an[ n ]","))

Extensions

More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020

A051226 Numbers m such that the Bernoulli number B_m has denominator 30.

Original entry on oeis.org

4, 8, 68, 76, 124, 152, 188, 236, 244, 248, 284, 376, 404, 412, 428, 436, 472, 488, 548, 596, 604, 628, 668, 724, 788, 824, 844, 872, 892, 908, 916, 964, 1028, 1052, 1076, 1084, 1132, 1156, 1208, 1244, 1252, 1256, 1268, 1324, 1336, 1348, 1388
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

Examples

			The numbers m = 4, 8, 68 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = 2*A051225(n). - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051227 Numbers m such that the Bernoulli number B_{2*m} has denominator 42.

Original entry on oeis.org

3, 57, 93, 129, 177, 201, 213, 237, 291, 327, 381, 417, 447, 471, 489, 501, 579, 591, 597, 633, 669, 681, 687, 807, 921, 951, 1011, 1047, 1059, 1083, 1137, 1149, 1167, 1203, 1227, 1263, 1299, 1317, 1347, 1371, 1389, 1437, 1461, 1497, 1563, 1569
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Programs

Formula

a(n) = A051228(n)/2. - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A051228 Numbers m such that the Bernoulli number B_m has denominator 42.

Original entry on oeis.org

6, 114, 186, 258, 354, 402, 426, 474, 582, 654, 762, 834, 894, 942, 978, 1002, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1614, 1842, 1902, 2022, 2094, 2118, 2166, 2274, 2298, 2334, 2406, 2454, 2526, 2598, 2634, 2694, 2742, 2778, 2874, 2922, 2994, 3126
Offset: 1

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.

Crossrefs

Programs

Formula

a(n) = 2*A051227(n). - Petros Hadjicostas, Jun 06 2020

Extensions

More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020

A119456 Numbers m such that the Bernoulli number B_{10*m} has denominator 66.

Original entry on oeis.org

1, 5, 17, 37, 47, 59, 61, 67, 71, 73, 79, 85, 101, 107, 127, 137, 139, 149, 163, 167, 185, 197, 199, 223, 227, 229, 257, 263, 269, 277, 283, 289, 295, 305, 307, 311, 313, 317, 331, 335, 347, 353, 355, 365, 373, 379, 383, 389, 395, 397, 401, 433, 449, 457, 461
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
  • PARI
    isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022

Formula

a(n) = A051230(n)/10 = A051229(n)/5.

Extensions

More terms from Alexander Adamchuk, Jul 28 2006

A271634 Numbers n such that Bernoulli number B_{n} has denominator 510.

Original entry on oeis.org

16, 32, 64, 128, 304, 496, 608, 752, 944, 992, 1504, 1648, 1744, 1984, 2512, 2672, 3008, 3152, 3296, 3376, 3488, 3568, 3632, 3664, 3856, 3968, 4112, 4208, 4528, 4976, 5024, 5072, 5344, 5584, 5648, 5776, 5872, 6016, 6064, 6128, 6224, 6304, 6592, 6752, 7024, 7136, 7264
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Comments

510 = 2 * 3 * 5 * 17.
All terms are multiple of a(1) = 16.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 463.

Examples

			Bernoulli B_{16} is -3617/510, hence 16 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,510);
  • Mathematica
    Select[Range[0, 1000], Denominator[BernoulliB[#]] == 510 &] (* Robert Price, Apr 21 2016 *)
  • PARI
    isok(n) = denominator(bernfrac(n)) == 510; \\ Michel Marcus, Apr 22 2016

Extensions

More terms from Michel Marcus, Apr 22 2016

A271635 Numbers n such that Bernoulli number B_{n} has denominator 138.

Original entry on oeis.org

22, 154, 242, 286, 374, 814, 1034, 1078, 1298, 1342, 1474, 1562, 1694, 1738, 2134, 2222, 2354, 2794, 3014, 3058, 3146, 3278, 3454, 3586, 3674, 3982, 4114, 4246, 4334, 4378, 4906, 4994, 5654, 5698, 5786, 5918, 5962, 6094, 6226, 6754, 6842, 6886, 6974, 7414, 7634, 7678, 7766
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Comments

138 = 2 * 3 * 23.
All terms are multiple of a(1) = 22.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 17.

Examples

			Bernoulli B_{22} is 854513/138, hence 22 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,138);
  • Mathematica
    Select[Range[0, 1000], Denominator[BernoulliB[#]] == 138 &] (* Robert Price, Apr 21 2016 *)
  • PARI
    isok(n) = denominator(bernfrac(n)) == 138; \\ Michel Marcus, Apr 22 2016

Extensions

More terms from Michel Marcus, Apr 22 2016

A272138 Numbers n such that Bernoulli number B_{n} has denominator 798.

Original entry on oeis.org

18, 54, 342, 558, 774, 1026, 1206, 1674, 1962, 2322, 2826, 2934, 3006, 3474, 3618, 3798, 4014, 4086, 4122, 4842, 5706, 5886, 6282, 6354, 6498, 6894, 7002, 7362, 7578, 7794, 7902, 8082, 8226, 8334, 8478, 8766, 8982, 9018, 9378, 9414, 9846, 10134, 10278, 10422, 10602, 10782
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Comments

798 = 2 * 3 * 7 * 19.
All terms are multiple of a(1) = 18.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 775.

Examples

			Bernoulli B_{18} is 43867/798, hence 18 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,798);
  • Mathematica
    Select[Range[0, 1000], Denominator[BernoulliB[#]] == 798 &] (* Robert Price, Apr 21 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 798, print1(n, ", "))); \\ Altug Alkan, Apr 22 2016

Extensions

More terms from Altug Alkan, Apr 22 2016

A272139 Numbers n such that Bernoulli number B_{n} has denominator 1806.

Original entry on oeis.org

42, 294, 798, 1806, 2058, 2814, 2982, 4074, 4578, 5334, 5586, 6594, 6846, 8106, 8274, 8358, 9366, 9534, 12642, 12894, 13314, 14154, 14658, 15162, 17178, 18186, 19194, 20118, 20454, 21882, 21966, 22722, 22974, 23982, 25914, 26502, 27006, 28266, 28518, 29778
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Comments

1806 = 2 * 3 * 7 * 43.
All terms are multiple of a(1) = 42.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 1.
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806.

Examples

			Bernoulli B_{42} is 1520097643918070802691/1806, hence 42 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1806);
  • Mathematica
    Select[Range[0, 1000], Denominator[BernoulliB[#]] == 1806 &] (* Robert Price, Apr 21 2016 *)
    Select[Range[42,30000,42],Denominator[BernoulliB[#]]==1806&] (* Harvey P. Dale, Jun 01 2019 *)
  • PARI
    lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 1806, print1(n, ", "))); \\ Altug Alkan, Apr 22 2016

Extensions

More terms from Altug Alkan, Apr 22 2016
Showing 1-10 of 35 results. Next