A051229 Numbers m such that the Bernoulli number B_{2*m} has denominator 66.
5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, 745, 815, 835, 925, 985, 995, 1115, 1135, 1145, 1285, 1315, 1345, 1385, 1415, 1445, 1475, 1525, 1535, 1555, 1565, 1585, 1655, 1675, 1735, 1765
Offset: 1
Examples
The numbers m = 5, 25 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - _Petros Hadjicostas_, Jun 06 2020
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
Links
Programs
-
Mathematica
Select[Range[2000],Denominator[BernoulliB[2 #]]==66&] (* Harvey P. Dale, Mar 11 2012 *)
-
PARI
is(n)=denominator(bernfrac(2*n))==66 \\ Charles R Greathouse IV, Feb 06 2017
-
Sage
[n for n in (1..2000) if denominator(bernoulli(2*n))==66 ] # G. C. Greubel, Jun 06 2020
Formula
a(n) = 5*A119456(n). - G. C. Greubel, Jun 06 2020
Extensions
More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020
Comments