cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A067846 Least m such that A067513(m) = n.

Original entry on oeis.org

1, 2, 4, 16, 12, 48, 36, 60, 120, 252, 180, 480, 360, 540, 720, 1080, 1620, 1260, 1680, 2160, 3600, 2520, 3780, 6720, 6480, 9240, 5040, 7560, 15840, 16380, 10080, 22680, 18480, 32400, 20160, 15120, 37800, 32760, 25200, 40320, 30240, 73920, 45360
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2002

Keywords

Comments

There are 57 terms less than 200000. - David Wasserman, Dec 20 2002

Crossrefs

Programs

  • Maple
    N:= 80: # to get a(1)..a(N)
    A067513:= n -> nops(select(t -> isprime(t+1), numtheory:-divisors(n))):
    A:= Vector(N):
    count:= 1: A[1]:= 1:
    for n from 2 by 2 while count < N do
      v:= A067513(n);
      if v <= N and A[v]=0 then A[v]:= n; count:= count+1; fi
    od:
    convert(A, list); # Robert Israel, Jun 08 2018
  • PARI
    a067513(n) = sumdiv(n, d, isprime(d+1));
    a(n) = {my(k=1); while(a067513(k) != n, k++); k;} \\ Michel Marcus, Jun 09 2018

Extensions

More terms from David Wasserman, Dec 20 2002

A202727 Position of records in A067513.

Original entry on oeis.org

1, 2, 4, 12, 36, 60, 120, 180, 360, 540, 720, 1080, 1260, 1680, 2160, 2520, 3780, 5040, 7560, 10080, 15120, 25200, 30240, 45360, 55440, 60480, 75600, 85680, 100800, 110880, 131040, 166320, 196560, 257040, 332640, 393120, 514080, 655200, 665280, 786240, 831600
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that n has more divisors d such that d+1 is prime than any smaller number.

Crossrefs

Programs

  • PARI
    r=0;for(n=1,1e8,t=sumdiv(n,d,isprime(d+1));if(t>r,r=t;print1(n", ")))

A202728 Records in A067513.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 27, 28, 31, 36, 39, 41, 43, 45, 47, 48, 50, 52, 54, 57, 60, 62, 67, 73, 74, 76, 79, 82, 83, 85, 86, 88, 89, 93, 98, 101, 102, 109, 111, 117, 120, 134, 136, 143, 151, 158, 160, 166, 167, 192, 202, 221
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    r=0;for(n=1,1e8,t=sumdiv(n,d,isprime(d+1));if(t>r,r=t;print1(t", ")))

Formula

a(n) = A067513(A202727(n)).

A051222 Numbers k such that Bernoulli number B_{k} has denominator 6.

Original entry on oeis.org

2, 14, 26, 34, 38, 62, 74, 86, 94, 98, 118, 122, 134, 142, 146, 158, 182, 194, 202, 206, 214, 218, 254, 266, 274, 278, 298, 302, 314, 326, 334, 338, 362, 386, 394, 398, 422, 434, 446, 454, 458, 482, 494, 514, 518, 526, 538, 542, 554, 566, 578
Offset: 1

Views

Author

Keywords

Comments

Alternative definition: let D(m) = set of divisors of m; sequence gives n such that the set 1 + D(n) contains only two primes, 2 and 3. E.g., n=98: D(98)={1,2,7,15,49,98}, 1+D = {2,3,8,16,50,99} of which only 2 terms are prime numbers: {2,3}. Observation by Labos Elemer, Jun 24 2002. This is a consequence of the von Staudt-Clausen theorem. - N. J. A. Sloane, Jan 04 2004
The fraction of Bernoulli numbers with denominator 6 is roughly 1/6, see Erdős-Wagstaff. But calculations by H. Cohen and G. Tenenbaum suggest that the fraction is closer to 1/7 (posting to Number Theory List around Dec 20 2005).
Simon Plouffe reports (Feb 13 2007) that at B_{9083002} the proportion is 0.151848915149418661363281... and still decreasing very slowly.
In his PhD thesis at the University of Illinois (see reference), Richard Sunseri proved that a higher proportion of Bernoulli denominators equal 6 than any other value.
Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018
Conjecture: When the expression (p+q^b)/2 is required to be prime, p is prime, and q is a prime >=5, then all p values are prime congruent to 1 (mod 12) (A068228), if and only if the exponent b is a member of this set. - Richard R. Forberg, Apr 07 2025
There are additional exponential expressions conjectured for generating each of several known prime subsequences (e.g., Pythagorean primes, A002144) where the sequence is invariant to the exponent, if and only if the exponent is a member of this set. See Forberg link. - Richard R. Forberg, Apr 25 2025

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, CRC Press, 2005, Sect. 3.9.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 10.

Crossrefs

Except for 2, all terms are even nontotient numbers. Proper subset of A005277: e.g., 50 and 90 are not here. - Labos Elemer
A112772 is a subsequence. - Bernd C. Kellner, Mar 21 2018

Programs

  • Mathematica
    di[x_] := Divisors[x]
    dp[x_] := Part[di[x], Flatten[Position[PrimeQ[1+di[x]], True]]]+1
    Do[s=Length[dp[n]]; If[Equal[s, 2], Print[n]], {n, 1, 10000}] (* Labos Elemer *)
    Do[s=Denominator[BernoulliB[n]]; If[Equal[s, 6], Print[n]], {n, 1, 1000}] (* Labos Elemer *)
    Do[s=1+Divisors[n];s1=Flatten[Position[PrimeQ[s], True]]; (*analogous [suitably modified] pairs of programs yield A051225-A051230*) s2=Part[s, s1];If[Equal[s2, {2, 3}], Print[n]], {n, 1, 100}] (* Labos Elemer *)
    Select[Range[600],Denominator[BernoulliB[#]]==6&] (* Harvey P. Dale, Dec 08 2011 *)
  • PARI
    for(n=1,10^3,if(denominator(bernfrac(n))==6,print1(n,", "))); \\ Joerg Arndt, Oct 28 2014
    
  • PARI
    is(n)=if(n%2,return(0)); fordiv(n/2,d,if(isprime(2*d+1)&&d>1, return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Additional comments and references from Sam Wagstaff, Dec 20 2005

A072627 Number of divisors d of n such that d-1 is prime.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 4, 0, 1, 1, 2, 0, 3, 0, 2, 1, 0, 0, 6, 0, 0, 1, 2, 0, 3, 0, 3, 1, 0, 0, 5, 0, 1, 1, 3, 0, 4, 0, 2, 1, 0, 0, 7, 0, 0, 1, 1, 0, 4, 0, 3, 1, 0, 0, 7, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 8, 0, 1, 1, 2, 0, 2, 0, 4, 1, 0, 0, 7, 0, 0, 1, 3, 0, 5, 0, 1, 1, 0, 0, 8, 0, 2, 1, 2, 0, 3, 0, 3, 1
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Comments

Inverse Möbius transform of A010051 (when it is shifted one step right). - R. J. Mathar, Jan 25 2009, comment in parenthesis added by Antti Karttunen, Dec 27 2018
If n == 3 (mod 6) then a(n)=1; a(n) = 0 for all other odd n. - Robert Israel, Dec 27 2018

Examples

			n=240: a(240)=12 because primes of -1+d form are: {2,3,5,7,11,19,23,29,47,59,79,239}. These and only these divisors are present in any InvSigma of n, like:InvSig[240]= {114,135,158,177,203,209,239} with {2,3,19,3,5,2,79,3,59,7,29,11,19,239} p-divisors.
		

Crossrefs

Cf. also A067513.

Programs

  • Haskell
    a072627 = length . filter ((== 1) . a010051 . (subtract 1)) . a027749_row
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    f:= n -> nops(select(t -> isprime(t-1), numtheory:-divisors(n))):
    map(f, [$1..100]); # Robert Israel, Dec 27 2018
  • Mathematica
    di[x_] := Divisors[x] dp[x_] := Part[di[x], Flatten[Position[PrimeQ[ -1+di[x]], True]]]-1 Table[Length[dp[w]], {w, 1, 128}]
    Table[Count[Divisors[n],?(PrimeQ[#-1]&)],{n,110}] (* _Harvey P. Dale, Jul 04 2021 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d-1)); \\ Michel Marcus, Dec 27 2018

Formula

If p is prime <> 3, then divisors(p)-1 = {1,p}-1 = {0,p-1}, so a(p) = 0.

A328028 Nonprime numbers n whose proper divisors (greater than 1 and less than n) have no consecutive divisibilities.

Original entry on oeis.org

1, 4, 6, 9, 10, 12, 14, 15, 21, 22, 24, 25, 26, 30, 33, 34, 35, 36, 38, 39, 45, 46, 48, 49, 51, 55, 57, 58, 60, 62, 63, 65, 69, 70, 72, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 105, 106, 108, 111, 115, 118, 119, 120, 121, 122, 123, 129, 132, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2019

Keywords

Examples

			The proper divisors of 18 are {2, 3, 6, 9}, and {3, 6} are a consecutive divisible pair, so 18 does not belong to the sequence.
The proper divisors of 60 are {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, and none of {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 10}, {10, 12}, {12, 15}, {15, 20}, or {20, 30} are divisible pairs, so 60 belongs to the sequence.
		

Crossrefs

Positions of 0's or 2's in A328026.
1 and positions of 1's in A328194.
The version including primes is A328161.
Partitions with no consecutive divisibilities are A328171.
Numbers whose proper divisors have no consecutive successions are A088725.
Contains A001358.

Programs

  • Maple
    filter:= proc(n) local D,i;
      if isprime(n) then return false fi;
      D:= sort(convert(numtheory:-divisors(n) minus {1,n}, list));
      for i from 1 to nops(D)-1 do if (D[i+1]/D[i])::integer then return false fi od:
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 11 2019
  • Mathematica
    Select[Range[100],!PrimeQ[#]&&!MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]

A322312 a(n) = Product_{d|n, d+1 is prime} prime(1+A286561(n,d+1)), where A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

2, 6, 2, 20, 2, 18, 2, 28, 2, 12, 2, 120, 2, 6, 2, 88, 2, 60, 2, 60, 2, 12, 2, 168, 2, 6, 2, 40, 2, 72, 2, 104, 2, 6, 2, 800, 2, 6, 2, 168, 2, 54, 2, 40, 2, 12, 2, 528, 2, 12, 2, 40, 2, 84, 2, 56, 2, 12, 2, 1440, 2, 6, 2, 136, 2, 72, 2, 20, 2, 24, 2, 2240, 2, 6, 2, 20, 2, 36, 2, 528, 2, 12, 2, 720, 2, 6, 2, 112, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Crossrefs

Cf. A067513, A185633, A286561, A322313 (rgs-transform), A322314.
Cf. also A293514, A322310.

Programs

  • PARI
    A322312(n) = { my(m=1,p); fordiv(n,d,p=1+d; if(isprime(p), for(i=0,oo,if(n%(p^i),m *= prime(i);break)))); (m); };

Formula

a(n) = Product_{d|n} A000040(1+A286561(n,1+d))^A010051(1+d).
a(n) = A181819(A185633(n)).
For all n, A001222(a(n)) = A067513(n).

A328161 Numbers n that are prime or whose proper divisors (greater than 1 and less than n) have no consecutive divisibilities.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 77, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2019

Keywords

Examples

			The proper divisors of 18 are {2, 3, 6, 9}, and {3, 6} are a consecutive divisible pair, so 18 does not belong to the sequence.
The proper divisors of 60 are {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, and none of {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 10}, {10, 12}, {12, 15}, {15, 20}, or {20, 30} are divisible pairs, so 60 belongs to the sequence.
		

Crossrefs

Equals the union of A328028 and A000040.
Complement of A328189.
One, primes, and positions of 1's in A328194.
Partitions with no consecutive divisibilities are A328171.

Programs

  • Maple
    filter:= proc(n) local D,i;
      if isprime(n) then return true fi;
      D:= sort(convert(numtheory:-divisors(n) minus {1,n}, list));
      for i from 1 to nops(D)-1 do if (D[i+1]/D[i])::integer then return false fi od:
      true
    end proc:
    select(filter, [$1..100]); # Robert Israel, Oct 11 2019
  • Mathematica
    Select[Range[100],!MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]

A328189 Numbers n with at least one pair of consecutive divisible nontrivial divisors (greater than 1 and less than n).

Original entry on oeis.org

8, 16, 18, 20, 27, 28, 32, 40, 42, 44, 50, 52, 54, 56, 64, 66, 68, 75, 76, 78, 80, 81, 88, 92, 98, 99, 100, 102, 104, 110, 112, 114, 116, 117, 124, 125, 126, 128, 130, 136, 138, 140, 147, 148, 152, 153, 156, 160, 162, 164, 170, 171, 172, 174, 176, 184, 186
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2019

Keywords

Examples

			The nontrivial divisors of 42 are {2, 3, 6, 7, 14, 21}, with pairs of consecutive divisible divisors {3, 6} and {7, 14}, so 42 belongs to the sequence.
		

Crossrefs

Complement of A328161.
Positions of terms greater than 1 in A328194.
Partitions with a pair of consecutive divisible parts are A328221.

Programs

  • Mathematica
    Select[Range[200],MatchQ[DeleteCases[Divisors[#],1|#],{_,x_,y_,_}/;Divisible[y,x]]&]
    Select[Range[2,200],AnyTrue[Partition[Most[Rest[Divisors[#]]],2,1],Mod[#[[2]],#[[1]]] == 0&]&] (* Harvey P. Dale, Mar 14 2023 *)

A105017 Positions of records in A064097.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 19, 23, 43, 47, 94, 139, 235, 283, 517, 659, 1081, 1319, 2209, 2879, 5758, 8637, 13301, 20147, 30337, 49727, 61993, 103823, 135313, 247439, 366683, 606743, 811879, 1266767, 1739761, 2913671, 3797401, 5827343, 8288641, 16577282, 22784407, 37346483, 58003213, 81768767
Offset: 1

Views

Author

Hugo Pfoertner, Feb 17 2006

Keywords

Comments

With a(1) = 1, a(n) is the smallest number m such that the number of iterations of k -> k - k/p, p being any prime factor of k, needed to reach 1 starting at k = m is equal to n-1. (See Example section.) - Jaroslav Krizek, Feb 15 2010
a(n) =~ sqrt(e^(5n/6)). - Robert G. Wilson v, Aug 11 2022

Examples

			a(6)=11 because m=11 requires 6-1 = 5 iterations of r -> r - (largest divisor d < r) to reach 1 (the 5 iterations are 11-1=10, 10-5=5, 5-1=4, 4-2=2, and 2-1=1) and 11 is the smallest such number m. - _Jaroslav Krizek_, Feb 15 2010
		

Crossrefs

Programs

  • Maple
    A105017 := proc()
        local maxa,a ;
        maxa := -999 ;
        for n from 1 do
            a := A064097(n) ;
            if a > maxa then
                printf("%d\n",n) ;
                maxa :=a ;
            end if;
        end do:
    end proc:
    A105017() ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    g[n_] := Block[{p = Select[1 + Divisors@n, PrimeQ]}, n*p/(p - 1)]; f[n_] := f[n] = Block[{lst = Union@Flatten[g@# & /@ f[n - 1]]}, If[ Length@ lst > 325, lst = Take[lst, 325 (* This limit must be increased for greater n's from the start. *) ]]; lst]; f[1] = {1}; f[0] = {0}; lst = {}; Do[ AppendTo[lst, Min[ f[n]]]; f[n - 1] =., {n, 44}]; lst (* Robert G. Wilson v, Aug 11 2022 *)
  • PARI
    a=vectorsmall(10^7); a[1]=0;
    for(n=2,#a,if(isprime(n),a[n]=1+a[n-1],f=factor(n);a[n]=a[f[1,1]]+a[n/f[1,1]])); \\ computes A064097
    r=-oo; for(k=1,#a,if(a[k]>r,print1(k,", ");r=a[k])); \\ Hugo Pfoertner, Mar 16 2020

Extensions

a(1)=1 inserted by Robert G. Wilson v, Mar 16 2020
Showing 1-10 of 26 results. Next