cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 128 results. Next

A108166 Semiprimes p*q where both p and q are primes of the form 6n-1 (A007528).

Original entry on oeis.org

25, 55, 85, 115, 121, 145, 187, 205, 235, 253, 265, 289, 295, 319, 355, 391, 415, 445, 451, 493, 505, 517, 529, 535, 565, 583, 649, 655, 667, 685, 697, 745, 781, 799, 835, 841, 865, 895, 901, 913, 943, 955, 979, 985, 1003, 1081, 1111, 1135, 1165, 1177, 1189
Offset: 1

Views

Author

Jonathan Vos Post, Jun 13 2005

Keywords

Comments

Every semiprime not divisible by 2 or 3 must be in one of these three disjoint sets:
A108164 - the product of two primes of the form 6n + 1 (A002476),
A108166 - the product of two primes of the form 6n - 1 (A007528),
A108172 - the product of a prime of the form 6n + 1 and a prime of the form 6n - 1.
The product of two primes of the form 6n - 1 is a semiprime of the form 6n + 1.

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Programs

  • Mathematica
    Module[{nn = 150, pf}, pf = Select[6Range[nn] - 1, PrimeQ]; Take[Union[Times@@@Tuples[pf, 2]], nn/2]] (* Harvey P. Dale, Dec 09 2013 *)
    Select[6Range[200] + 1, PrimeOmega[#] == 2 && Mod[FactorInteger[#][[1, 1]], 6] == 5 &] (* Alonso del Arte, Aug 24 2017 *)

Formula

{a(n)} = {p*q where both p and q are in A007528}.

Extensions

Edited and extended by Ray Chandler, Oct 15 2005

A334479 Decimal expansion of Product_{k>=1} (1 + 1/A007528(k)^3).

Original entry on oeis.org

1, 0, 0, 9, 1, 3, 4, 5, 0, 8, 6, 3, 8, 4, 7, 4, 4, 7, 8, 0, 7, 1, 1, 3, 7, 5, 3, 9, 5, 8, 9, 2, 0, 5, 5, 8, 8, 1, 7, 4, 5, 6, 4, 7, 8, 5, 2, 9, 5, 2, 5, 5, 9, 9, 3, 0, 7, 2, 3, 6, 2, 0, 8, 1, 4, 8, 7, 9, 6, 2, 8, 3, 5, 9, 1, 6, 3, 6, 0, 3, 2, 1, 1, 9, 3, 2, 6, 6, 4, 3, 5, 2, 6, 4, 0, 4, 9, 6, 5, 9, 7, 5, 6, 1, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)).
For s > 1, Product_{k>=1} (1 + 1/A007528(k)^s) / (1 - 1/A007528(k)^s) = (2^s - 1) * (3^s - 1) * zeta(s) / (zeta(s, 1/6) - zeta(s, 5/6)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).

Examples

			1.0091345086384744780711375395892055881745647852...
		

Crossrefs

Formula

A334479 / A334480 = 91*sqrt(3)*zeta(3)/(6*Pi^3).
A334477 * A334479 = 810*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A108172 Semiprimes p*q where p is a prime of the form 6n+1 (A002476) and q is a prime of the form 6n-1 (A007528).

Original entry on oeis.org

35, 65, 77, 95, 119, 143, 155, 161, 185, 203, 209, 215, 221, 287, 299, 305, 323, 329, 335, 341, 365, 371, 377, 395, 407, 413, 437, 473, 485, 497, 515, 527, 533, 545, 551, 581, 611, 623, 629, 635, 671, 689, 695, 707, 713, 731, 737, 749, 755, 767, 779, 785
Offset: 1

Views

Author

Jonathan Vos Post, Jun 13 2005

Keywords

Comments

Also semiprimes of the form 6n-1 (or 6n+5).
Every semiprime not divisible by 2 or 3 must be in one of these three disjoint sets:
A108164 - the product of two primes of the form 6n+1 (A002476),
A108166 - the product of two primes of the form 6n-1 (A007528),
A108172 - the product of a prime of the form 6n+1 and a prime of the form 6n-1.
The product of a prime of the form 6n+1 and a prime of the form 6n-1 is a semiprime of the form 6n-1.
There are 740 of these numbers below 10,000.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Programs

  • Mathematica
    Select[Range[15,1000,2], Last/@FactorInteger[#]=={1,1} && IntegerQ[(#-2)/3]&] (* Vladimir Joseph Stephan Orlovsky, May 07 2011 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=5, lim\7, if(p%6<5, next); forprime(q=7, lim\5, if(q%6>1, next); t=p*q; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Feb 08 2017

Formula

a(n) = 6 * A112776(n) + 5.

Extensions

Edited by Ray Chandler, Oct 15 2005

A334480 Decimal expansion of Product_{k>=1} (1 - 1/A007528(k)^3).

Original entry on oeis.org

9, 9, 0, 8, 8, 4, 1, 4, 5, 5, 2, 5, 2, 1, 3, 3, 5, 6, 5, 6, 3, 4, 0, 3, 1, 7, 3, 5, 5, 9, 4, 3, 2, 7, 5, 1, 6, 4, 3, 4, 8, 3, 1, 2, 1, 7, 5, 0, 0, 7, 6, 1, 3, 3, 0, 4, 8, 6, 7, 7, 4, 7, 8, 4, 9, 4, 3, 1, 7, 8, 8, 8, 2, 5, 7, 6, 7, 4, 3, 1, 7, 7, 5, 2, 7, 6, 3, 4, 5, 2, 1, 7, 8, 9, 8, 8, 9, 2, 9, 2, 1, 3, 5, 4, 6, 7
Offset: 0

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)).
For s > 1, Product_{k>=1} (1 + 1/A007528(k)^s) / (1 - 1/A007528(k)^s) = (2^s - 1) * (3^s - 1) * zeta(s) / (zeta(s, 1/6) - zeta(s, 5/6)).
For s > 1, Product_{k>=1} (1 - 1/A002476(k)^s) * (1 - 1/A007528(k)^s) = 6^s / ((2^s - 1)*(3^s - 1)*zeta(s)).

Examples

			0.990884145525213356563403173559432751643483121750... = 1/1.0091997177631243951237...
		

Crossrefs

Formula

A334479 / A334480 = 91*sqrt(3)*zeta(3)/(6*Pi^3).
A334478 * A334480 = 108/(91*zeta(3)).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334482 Decimal expansion of Product_{k>=1} (1 + 1/A007528(k)^2).

Original entry on oeis.org

1, 0, 5, 8, 7, 6, 0, 2, 0, 1, 7, 8, 2, 5, 4, 5, 4, 9, 1, 3, 1, 5, 8, 9, 5, 4, 5, 4, 5, 7, 2, 1, 5, 3, 3, 3, 6, 7, 3, 4, 7, 1, 2, 6, 6, 3, 2, 4, 9, 5, 1, 2, 2, 4, 0, 7, 9, 5, 9, 2, 7, 0, 1, 0, 8, 2, 2, 2, 9, 4, 1, 4, 4, 9, 9, 3, 8, 1, 9, 3, 0, 0, 7, 1, 8, 2, 1, 2, 7, 2, 3, 4, 9, 6, 3, 6, 0, 4, 8, 4, 2, 7, 2, 9, 7
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

Product_{k>=1} (1 - 1/A007528(k)^2) = 9*A175646/Pi^2 = 0.9429084997268899069451546585312672145658112624159...

Examples

			1.058760201782545491315895454572153336734712663249...
		

Crossrefs

Formula

A334481 * A334482 = 54/(5*Pi^2).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A095016 Number of 6k+5 primes (A007528) in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 1, 3, 4, 6, 12, 23, 38, 68, 129, 236, 438, 806, 1516, 2864, 5388, 10178, 19327, 36839, 70201, 134151, 256884, 492947, 947240, 1822831, 3513553, 6781479, 13103713, 25349311, 49091941, 95168089, 184662764, 358633903, 697097374, 1356055862, 2639879029, 5142830496
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095015(n) for n >= 2.

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A354543 Convolution of A007528 and A002476.

Original entry on oeis.org

35, 142, 357, 746, 1351, 2250, 3533, 5248, 7467, 10232, 13675, 17910, 22979, 28972, 35931, 44192, 53677, 64392, 76727, 90640, 106209, 123614, 142849, 164232, 187841, 213802, 242181, 273080, 306733, 343266, 382745, 425218, 470685, 519740, 572275, 628302, 688277, 752440, 820557, 892634, 969475
Offset: 2

Views

Author

J. M. Bergot and Robert Israel, Aug 17 2022

Keywords

Comments

Convolution of the primes == 1 (mod 6) and the primes == 5 (mod 6).

Examples

			a(4) = A007528(1)*A002476(3) + A007528(2)*A002476(2) + A007528(3)*A002476(1) = 7*17 + 13*11 + 19*5 = 357.
		

Crossrefs

Programs

  • Maple
    P1:= select(isprime, [seq(i,i=1..10000,6)]):
    P5:= select(isprime, [seq(i,i=5..10000,6)]):
    seq(add(P1[i]*P5[n-i],i=1..n-1), n=1..min(nops(P1),nops(P5))+1);

Formula

a(n) = Sum_{j=1..n-1} A007528(j)*A002476(n-j).

A354510 Primes of the form p+q^2+r where p,q,r are three consecutive members of A007528.

Original entry on oeis.org

13007, 28211, 36857, 39227, 86441, 272507, 345731, 459671, 467867, 553529, 599087, 746507, 777911, 788561, 910127, 1354901, 1425653, 1512923, 1587587, 1710869, 2039171, 2509061, 2624411, 3196913, 3617597, 3896657, 4161611, 4260077, 4359749, 4460549, 4536893, 4639757, 5171093, 5280791, 5673911, 5963351
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 16 2022

Keywords

Comments

Primes of the form p+q^2+r where p, q and r are consecutive members of the sequence of primes of the form 6*k-1.
All terms == 5 (mod 6).

Examples

			a(3) = 36857 is in the sequence because 36857 = 179 + 191^2 + 197 and 179 = A007528(21), 191 = A007528(22) and 197 = A007528(23).
		

Crossrefs

Cf. A007528.

Programs

  • Maple
    q:= 5: r:= 11: count:= 0: R:= NULL:
    while count < 40 do
      p:= q; q:= r;
      do r:= r+6 until isprime(r);
      if isprime(p+q^2+r) then count:= count+1; R:= R, p+q^2+r fi
    od:
    R;
  • Mathematica
    Select[#[[1]] + #[[2]]^2 + #[[3]] & /@ Partition[Select[Prime[Range[400]], Mod[#1, 6] == 5 &], 3, 1], PrimeQ] (* Amiram Eldar, Aug 16 2022 *)

A144918 Duplicate of A007528.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

A144920 Duplicate of A007528.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

N. J. A. Sloane, Jul 21 2020

Keywords

Showing 1-10 of 128 results. Next