A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A140633 Primes of the form 7x^2+4xy+52y^2.
7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1
Comments
Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- John Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 1589-1617.
Crossrefs
Programs
-
Mathematica
Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)
A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).
3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1
Keywords
Comments
The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Examples
19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy] See Table II.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Magma
[3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
-
Mathematica
QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008
Extensions
More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.
A102273 Primes p such that Q(sqrt(-21p)) has genus characters chi_{-3} = -1, chi_{-7} = +1.
11, 23, 71, 107, 179, 191, 239, 263, 347, 359, 431, 443, 491, 599, 659, 683, 743, 827, 863, 911, 947, 1019, 1031, 1103, 1163, 1187, 1283, 1367, 1439, 1451, 1499, 1523, 1583, 1607, 1619, 1667, 1787, 1871, 2003, 2027, 2039, 2087
Offset: 1
Keywords
Comments
The 2-class number of these fields is always 4.
Primes of the form 2x^2 - 2xy + 11y^2 with x nonnegative and y positive. - T. D. Noe, May 08 2005
Also primes of the forms 8x^2 + 4xy + 11y^2 and 11x^2 + 2xy + 23y^2. See A140633. - T. D. Noe, May 19 2008
The discriminant of positive definite binary quadratic form (2,2,11) is -84. - Hugo Pfoertner, Jul 14 2019
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt{dp}) as p varies, Math. Comp. 41 (1983), 711-730.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[p: p in PrimesUpTo(3000) | p mod 84 in [2, 11, 23, 71]]; // Vincenzo Librandi, Jul 19 2012
-
Mathematica
f[x_,y_]:=2*x^2+2*x*y+11*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst,p]],{y,-5!,6!}],{x,-5!,6!}];Take[Union[lst],5! ] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2009 *)
Formula
The primes are congruent to {2, 11, 23, 71} (mod 84). - T. D. Noe, May 02 2008
A106859 Primes of the form 2x^2 + xy + 2y^2.
2, 3, 5, 17, 23, 47, 53, 83, 107, 113, 137, 167, 173, 197, 227, 233, 257, 263, 293, 317, 347, 353, 383, 443, 467, 503, 557, 563, 587, 593, 617, 647, 653, 677, 683, 743, 773, 797, 827, 857, 863, 887, 947, 953, 977, 983, 1013, 1097, 1103, 1163, 1187, 1193
Offset: 1
Comments
Discriminant=-15.
If p is a prime >= 17 in this sequence then k==0 (mod 4) for all k satisfying "B(2k)(p^k-1) is an integer" where B are the Bernoulli numbers. - Benoit Cloitre, Nov 14 2005
Equals {2, 3, 5 and primes congruent to 17, 23 (mod 30)}; see A039949 and A132235. Except for 2, the same as primes of the form 3x^2 + 5y^2, which has discriminant -60. - T. D. Noe, May 02 2008
Equals {3, 5 and primes congruent to 2, 8 (mod 15)} sorted; see A033212. This form is in the only non-principal class (respectively, genus) for fundamental discriminant -15. - Rick L. Shepherd, Jul 25 2014 [See A343241 for the 2, 8 (mod 15) primes.]
From Wolfdieter Lang, Jun 08 2021: (Start)
Regarding the above comment of T. D. Noe on the form [3, 0, 5]: the class number h(-60) = 2 = A000003(15), and [1, 0, 15] is the principal reduced form, representing the primes given in A033212.
The form [3, 0, 5] represents the proper equivalence class of the second genus of forms of discriminant Disc = -60. The Legendre symbol for the odd primes, not 3 or 5, satisfy L(-3|p) = -1 and L(5|p) = -1, leading to primes p == {17, 23, 47, 53} (mod 60). See the Buell reference, p. 52, for the two characters L(p|3) and L(p|5). The prime 2 is represented by the imprimitive reduced form [2, 2, 8] of Disc = -60. (End)
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 51-52.
Links
- Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 2000 terms from Vincenzo Librandi, next 691 terms from N. J. A. Sloane]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[2, 1, 2, 100000] (* see A106856 *)
-
PARI
{ fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate(); for(n=1,M, p = prime(n); t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p))); print(t1); } fc(2,1,2,1000); \\ N. J. A. Sloane, Jun 06 2014
Extensions
Removed defective Mma program and extended the b-file using the PARI program fc. - N. J. A. Sloane, Jun 06 2014
A107181 Primes of the form 8x^2 + 9y^2.
17, 41, 89, 113, 137, 233, 257, 281, 353, 401, 449, 521, 569, 593, 617, 641, 761, 809, 857, 881, 929, 953, 977, 1049, 1097, 1193, 1217, 1289, 1361, 1409, 1433, 1481, 1553, 1601, 1697, 1721, 1889, 1913, 2081, 2129, 2153, 2273, 2297, 2393, 2417
Offset: 1
Comments
Discriminant = -288. See A107132 for more information.
All terms are of the form x^2 + y^2, see A002144. - Zak Seidov, Jan 26 2014
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(5000) | p mod 24 eq 17 ]; // Vincenzo Librandi, Apr 19 2011
-
Mathematica
QuadPrimes2[8, 0, 9, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List()); forprime(p=17,lim, if(p%24==17, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
Formula
The primes are congruent to 17 (mod 24). - T. D. Noe, May 02 2008
A102271 Primes of the form 3*x^2 + 7*y^2.
3, 7, 19, 31, 103, 139, 199, 223, 271, 283, 307, 367, 439, 523, 607, 619, 643, 691, 727, 787, 811, 859, 1039, 1063, 1123, 1231, 1279, 1291, 1399, 1447, 1459, 1483, 1531, 1543, 1567, 1627, 1699, 1783, 1867, 1879, 1951, 1987, 2131, 2203, 2239, 2287, 2371, 2383
Offset: 1
Comments
Primes p such that Q(sqrt(-21p)) has genus characters chi_{-3} = +1, chi_{-7} = -1.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (First 1000 terms from Vincenzo Librandi).
- H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt{dp}) as p varies, Math. Comp. 41 (1983), 711-730.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[p: p in PrimesUpTo(3000) | p mod 84 in [3, 7, 19, 31, 55]]; // Vincenzo Librandi, Jul 19 2012
-
Mathematica
m=3; n=7; pLst={}; lim=3000; xMax=Sqrt[lim/m]; yMax=Sqrt[lim/n]; Do[p=m*x^2+n*y^2; If[p
T. D. Noe, May 05 2005 *) QuadPrimes2[3, 0, 7, 10000] (* see A106856 *) -
PARI
list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\7), if(isprime(t=w+7*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
The primes are congruent to {3, 7, 19, 31, 55} (mod 84). - T. D. Noe, May 02 2008
A107007 Primes of the form 3*x^2+8*y^2.
3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1
Comments
Discriminant=-96.
Except for 3, also primes of the forms 8*x^2+8*x*y+11*y^2 and 11*x^2+6*x*y+27*y^2. See A140633. - T. D. Noe, May 19 2008
Except for the first member, 3, all the members seem to be terms of A123239 which are prime in both k(i) and k(rho). - A.K. Devaraj, Nov 24 2009
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A139827.
Programs
-
Magma
[3] cat[ p: p in PrimesUpTo(3000) | p mod 24 in {11} ]; // Vincenzo Librandi, Jul 23 2012
-
Mathematica
QuadPrimes2[3, 0, 8, 10000] (* see A106856 *)
Formula
Except for 3, the terms are congruent to 11 (mod 24). - T. D. Noe, May 02 2008
A084865 Primes of the form 2x^2 + 3y^2.
2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 251, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 683, 701, 773, 797, 821, 827, 941, 947, 971, 1013, 1019, 1061, 1091, 1109, 1163, 1181, 1187
Offset: 1
Comments
Conjecture: A084863(a(n))=1?
Is it true that a(n) = A019338(n+1)?
Comment: The truth of the conjecture A084863(a(n))=1 follows from the genus theory of quadratic forms (see Cox, page 61). By comparing enough terms, we see that the conjecture a(n) = A019338(n+1) is false. - T. D. Noe, May 02 2008
Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6)=25. - Gary Detlefs, May 26 2014
Examples
A000040(17) = 59 = 32 + 27 = 2*4^2 + 3*3^2, therefore 59 is a term.
References
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[2, 0, 3, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\3), if(isprime(t=w+3*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
The primes are congruent to {2, 3, 5, 11} (mod 24). - T. D. Noe, May 02 2008
A122487 2 together with odd primes p that divide Fibonacci[(p+1)/2].
2, 13, 17, 37, 53, 73, 97, 113, 137, 157, 173, 193, 197, 233, 257, 277, 293, 313, 317, 337, 353, 373, 397, 433, 457, 557, 577, 593, 613, 617, 653, 673, 677, 733, 757, 773, 797, 853, 857, 877, 937, 953, 977, 997, 1013, 1033, 1093, 1097, 1117, 1153, 1193, 1213
Offset: 1
Comments
Primes of the form 2x^2+2xy+13y^2. Discriminant = -100. - T. D. Noe, May 02 2008
Primes of the form a^2 + b^2 such that a^2 == b^2 (mod 5). - Thomas Ordowski, May 18 2015
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[1000]],IntegerQ[Fibonacci[(#1+1)/2]/#1]&]
-
PARI
is(n)=my(k=n%20); (k==13||k==17||k==2) && isprime(n) \\ Charles R Greathouse IV, May 18 2015
Formula
Except for 2, the primes are congruent to {13, 17} (mod 20). - T. D. Noe, May 02 2008
2 together with all primes p == {13, 17} (mod 20). - Thomas Ordowski, May 18 2015
Extensions
Definition changed by T. D. Noe, May 02 2008
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions