A102272 2-class number of Q(sqrt(-21p)) as p runs through primes in A102271.
16, 8, 8, 8, 16, 16, 8, 32, 16, 16, 16, 8, 16, 8, 64, 8, 8, 8, 8, 128, 16, 8, 8, 32
Offset: 1
Links
- H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the classgroup of Q(sqrt{dp}) as p varies, Math. Comp. 41 (1983), 711-730.
Comments
References
Links
Crossrefs
Programs
Mathematica
QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p] && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]]; QuadPrimes2[1, 1, 2, 1000] (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014) max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)PARI
Extensions