A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A002480 Numbers of the form 2x^2 + 3y^2.
0, 2, 3, 5, 8, 11, 12, 14, 18, 20, 21, 27, 29, 30, 32, 35, 44, 45, 48, 50, 53, 56, 59, 62, 66, 72, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 108, 110, 116, 120, 125, 126, 128, 131, 140, 146, 147, 149, 155, 158, 162
Offset: 1
Keywords
References
- L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 425.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Peter Munn, Table of n, a(n) for n = 1..252 (based on A108563 b-file)
- L. Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
A084866 Primes that can be written in the form 2*p^2 + 3*q^2 with p and q prime.
83, 173, 197, 269, 317, 389, 461, 557, 653, 701, 797, 941, 1091, 1109, 1181, 1229, 1637, 1709, 1949, 1997, 2069, 2141, 2309, 2531, 2549, 2621, 2789, 2861, 3221, 3389, 3461, 3581, 3821, 4157, 4229, 4349, 4493, 5051, 5261, 5381, 5501, 5693
Offset: 1
Keywords
Examples
A000040(40) = 173 = 98 + 75 = 2*7^2 + 3*5^2 = 2*A000040(4)^2 + 3*A000040(3)^2, therefore 173 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # to get terms <= N P:= select(isprime, [2,seq(i,i=3..floor((N/2)^(1/2)))]): m:= nops(P): R:= {}: for p in P do for i from 2 to m while 3*P[i]^2 <= N - 2*p^2 do v:= 2*p^2 + 3*P[i]^2; if isprime(v) then R:= R union {v} fi od od: sort(convert(R,list)); # Robert Israel, Nov 05 2020
-
Mathematica
nn = 10^4; (* to get terms <= nn *) P = Select[Join[{2}, Range[3, Floor[Sqrt[nn/2]]]], PrimeQ]; m = Length[P]; R = {}; Do[For[i = 2, 3*P[[i]]^2 <= nn - 2*p^2, i++, v = 2*p^2 + 3*P[[i]]^2; If[PrimeQ[v], R = R ~Union~ {v}]], {p, P}]; Sort[R] (* Jean-François Alcover, Dec 13 2021, after Robert Israel *)
A084864 Numbers that can be written in the form 2*u^2 + 3*v^2, u*v>0.
5, 11, 14, 20, 21, 29, 30, 35, 44, 45, 50, 53, 56, 59, 62, 66, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 110, 116, 120, 125, 126, 131, 140, 146, 147, 149, 155, 158, 165, 173, 174, 176, 179, 180, 189, 194, 197, 200, 203, 206, 210, 212, 219, 224, 227, 236, 237
Offset: 1
Keywords
Examples
30 = 18 + 12 = 2*3^2 + 3*2^2, therefore 30 is a term.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
wmax = 240; Table[w = 2 u^2 + 3 v^2; If[w <= wmax, w, Nothing], {u, 1, Sqrt[wmax/2] // Ceiling}, {v, 1, Sqrt[wmax/3] // Ceiling}] // Flatten // Union (* Jean-François Alcover, Dec 13 2021 *)
A084863 Number of solutions to n = 2*u^2 + 3*v^2, u*v>0.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0
Offset: 1
Keywords
Comments
a(A084864(n)) > 0.
Examples
n=770 = 2*19^2 + 3*4^2 = 2*17^2 + 3*8^2 = 2*13^2 + 3*12^2 = 2*1 + 3*16^2, therefore a(770)=4.
Links
- Eric Weisstein's World of Mathematics, Diophantine Equation: 2nd Powers.
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions