cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A002480 Numbers of the form 2x^2 + 3y^2.

Original entry on oeis.org

0, 2, 3, 5, 8, 11, 12, 14, 18, 20, 21, 27, 29, 30, 32, 35, 44, 45, 48, 50, 53, 56, 59, 62, 66, 72, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 108, 110, 116, 120, 125, 126, 128, 131, 140, 146, 147, 149, 155, 158, 162
Offset: 1

Keywords

References

  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 425.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes see A084865.
Cf. A000075 (growth), A002481, A108563.

A084866 Primes that can be written in the form 2*p^2 + 3*q^2 with p and q prime.

Original entry on oeis.org

83, 173, 197, 269, 317, 389, 461, 557, 653, 701, 797, 941, 1091, 1109, 1181, 1229, 1637, 1709, 1949, 1997, 2069, 2141, 2309, 2531, 2549, 2621, 2789, 2861, 3221, 3389, 3461, 3581, 3821, 4157, 4229, 4349, 4493, 5051, 5261, 5381, 5501, 5693
Offset: 1

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

Subsequence of A084864 and of A084865; A084863(a(n))>0.

Examples

			A000040(40) = 173 = 98 + 75 = 2*7^2 + 3*5^2 = 2*A000040(4)^2 + 3*A000040(3)^2, therefore 173 is a term.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get terms <= N
    P:= select(isprime, [2,seq(i,i=3..floor((N/2)^(1/2)))]):
    m:= nops(P):
    R:= {}:
    for p in P do
      for i from 2 to m while 3*P[i]^2 <= N - 2*p^2 do
        v:= 2*p^2 + 3*P[i]^2;
        if isprime(v) then R:= R union {v} fi
    od od:
    sort(convert(R,list)); # Robert Israel, Nov 05 2020
  • Mathematica
    nn = 10^4; (* to get terms <= nn *)
    P = Select[Join[{2}, Range[3, Floor[Sqrt[nn/2]]]], PrimeQ];
    m = Length[P];
    R = {};
    Do[For[i = 2, 3*P[[i]]^2 <= nn - 2*p^2, i++,
         v = 2*p^2 + 3*P[[i]]^2;
         If[PrimeQ[v], R = R ~Union~ {v}]],
    {p, P}];
    Sort[R] (* Jean-François Alcover, Dec 13 2021, after Robert Israel *)

A084864 Numbers that can be written in the form 2*u^2 + 3*v^2, u*v>0.

Original entry on oeis.org

5, 11, 14, 20, 21, 29, 30, 35, 44, 45, 50, 53, 56, 59, 62, 66, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 110, 116, 120, 125, 126, 131, 140, 146, 147, 149, 155, 158, 165, 173, 174, 176, 179, 180, 189, 194, 197, 200, 203, 206, 210, 212, 219, 224, 227, 236, 237
Offset: 1

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

A084863(a(n)) > 0; for primes see A084865, A084866.

Examples

			30 = 18 + 12 = 2*3^2 + 3*2^2, therefore 30 is a term.
		

Programs

  • Mathematica
    wmax = 240;
    Table[w = 2 u^2 + 3 v^2; If[w <= wmax, w, Nothing], {u, 1, Sqrt[wmax/2] // Ceiling}, {v, 1, Sqrt[wmax/3] // Ceiling}] // Flatten // Union (* Jean-François Alcover, Dec 13 2021 *)

A084863 Number of solutions to n = 2*u^2 + 3*v^2, u*v>0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0
Offset: 1

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

a(A084864(n)) > 0.

Examples

			n=770 = 2*19^2 + 3*4^2 = 2*17^2 + 3*8^2 = 2*13^2 + 3*12^2 = 2*1 +
3*16^2, therefore a(770)=4.
		

Crossrefs

Showing 1-5 of 5 results.