cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084865 Primes of the form 2x^2 + 3y^2.

Original entry on oeis.org

2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 251, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 683, 701, 773, 797, 821, 827, 941, 947, 971, 1013, 1019, 1061, 1091, 1109, 1163, 1181, 1187
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

Subsequence of A084864; A084863(a(n))>0.
Conjecture: A084863(a(n))=1?
Is it true that a(n) = A019338(n+1)?
Comment: The truth of the conjecture A084863(a(n))=1 follows from the genus theory of quadratic forms (see Cox, page 61). By comparing enough terms, we see that the conjecture a(n) = A019338(n+1) is false. - T. D. Noe, May 02 2008
Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6)=25. - Gary Detlefs, May 26 2014

Examples

			A000040(17) = 59 = 32 + 27 = 2*4^2 + 3*3^2, therefore 59 is a term.
		

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, 0, 3, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\3), if(isprime(t=w+3*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {2, 3, 5, 11} (mod 24). - T. D. Noe, May 02 2008

A084864 Numbers that can be written in the form 2*u^2 + 3*v^2, u*v>0.

Original entry on oeis.org

5, 11, 14, 20, 21, 29, 30, 35, 44, 45, 50, 53, 56, 59, 62, 66, 75, 77, 80, 83, 84, 93, 98, 99, 101, 107, 110, 116, 120, 125, 126, 131, 140, 146, 147, 149, 155, 158, 165, 173, 174, 176, 179, 180, 189, 194, 197, 200, 203, 206, 210, 212, 219, 224, 227, 236, 237
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

A084863(a(n)) > 0; for primes see A084865, A084866.

Examples

			30 = 18 + 12 = 2*3^2 + 3*2^2, therefore 30 is a term.
		

Programs

  • Mathematica
    wmax = 240;
    Table[w = 2 u^2 + 3 v^2; If[w <= wmax, w, Nothing], {u, 1, Sqrt[wmax/2] // Ceiling}, {v, 1, Sqrt[wmax/3] // Ceiling}] // Flatten // Union (* Jean-François Alcover, Dec 13 2021 *)

A084863 Number of solutions to n = 2*u^2 + 3*v^2, u*v>0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

a(A084864(n)) > 0.

Examples

			n=770 = 2*19^2 + 3*4^2 = 2*17^2 + 3*8^2 = 2*13^2 + 3*12^2 = 2*1 +
3*16^2, therefore a(770)=4.
		

Crossrefs

A259142 Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.

Original entry on oeis.org

17, 83, 43, 61, 149, 199, 263, 113, 331, 139, 383, 373, 173, 191, 199, 569, 587, 547, 251, 269, 277, 757, 1223, 1321, 859, 347, 787, 373, 3779, 1789, 1063, 953, 433, 1181, 1019, 1069, 1283, 503, 2311, 5209, 1193, 1453, 563, 1301, 2389, 607, 1367, 1657, 641, 659, 1483, 1777, 1811, 1861, 719, 1913, 1657, 1997, 4391, 3229, 797, 1823
Offset: 1

Views

Author

Zak Seidov, Jun 19 2015

Keywords

Comments

Values of {p,q,r}: {17,3,2},{83,2,5},{43,3,2},{61,2,3},{149,5,2},{199,2,5},{263,3,5},{113,2,3}.
a(2) = A084866(1). - Michel Marcus, Jun 20 2015
For p in A093191, a((p-4)/13) = p. - Robert Israel, Apr 30 2018

Examples

			17=1*3^2+2*2^2, 83=2*2^2+3*5^2, 43=3*3^2+4*2^2.
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..20)]: np:= 20:
    for n from 1 to 100 do
      found:= false;
      while not found do
        R:= sort([seq(seq(n*q^2+(n+1)*p^2,p=P),q=P)]);
        w:= n*4+(n+1)*P[-1]^2+1;
        r:= ListTools:-SelectFirst(isprime,R);
        if r <> NULL and r <= w then
          A[n]:= r;
          found:= true;
        else
          P:= [op(P), seq(ithprime(i),i=np+1..np+20)];
          np:= np+20;
        fi
      od;
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 30 2018
Showing 1-4 of 4 results.