cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Crossrefs

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A229856 Primes of the form 384*k + 257.

Original entry on oeis.org

257, 641, 1409, 3329, 4481, 7937, 9473, 9857, 11393, 11777, 12161, 13313, 13697, 14081, 15233, 16001, 17921, 19073, 19457, 19841, 21377, 23297, 25601, 28289, 30593, 30977, 35201, 35969, 36353, 37889, 38273, 39041, 40193, 40577, 40961, 41729, 43649, 44417
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

Every Fermat number greater than 257 has a prime factor of the form 384*k + 257, k > 0.

Crossrefs

Subsequence of A107181 (primes of the form 8x^2+9y^2).

Programs

  • Magma
    [384*n+257 : n in [0..115] | IsPrime(384*n+257)];
  • Mathematica
    Select[Table[384*n + 257, {n, 0, 115}], PrimeQ]

A139527 Numbers n such that numbers 24n+5 are primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1

Views

Author

Artur Jasinski, Apr 25 2008

Keywords

Comments

Numbers n such that:
24n+1 is prime see A111174, primes 24n+1 see A107008
24n+5 is prime see A139527, primes 24n+5 see A107003
24n+7 is prime see A139483, primes 24n+7 see A107006
24n+11 is prime A139528, primes 24n+11 see A107007
24n+13 is prime see A139529, primes 24n+13 see A139530
24n+17 is prime see A139531, primes 24n+17 see A107181
24n+19 is prime see A139532, primes 24n+19 see A141373
24n+23 is prime see A131210, primes 24n+23 see A134517

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)

A189242 Numbers n such that 24*n+17 is not prime.

Original entry on oeis.org

2, 6, 7, 8, 12, 13, 15, 17, 19, 20, 22, 27, 28, 29, 30, 32, 34, 37, 41, 42, 44, 46, 47, 48, 51, 52, 54, 55, 57, 60, 62, 63, 65, 67, 68, 69, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 87, 90, 91, 92, 93, 96, 97, 98, 102, 103, 104, 105, 106, 107, 111, 112, 117, 118
Offset: 1

Views

Author

Vincenzo Librandi, Apr 19 2011

Keywords

Examples

			Distribution of the terms in the following triangular array:
*;
*,*;
*,*,*;
*,*,*,*;
*,*,*,*,*;
*,2,*,*,*,*;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*;
*,*,*,*,8,*,*,*,*;
*,*,*,*,*,*,*,*,*,*;
*,*,6,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,17,*,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 8)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | not IsPrime(24*n+17)]; // Vincenzo Librandi, Apr 19 2011
  • Mathematica
    Select[Range[1,300],!PrimeQ[24 # + 17] &] (* Vincenzo Librandi, Aug 05 2012 *)

A256397 Primes congruent to {17, 23} mod 24.

Original entry on oeis.org

17, 23, 41, 47, 71, 89, 113, 137, 167, 191, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 449, 479, 503, 521, 569, 593, 599, 617, 641, 647, 719, 743, 761, 809, 839, 857, 863, 881, 887, 911, 929, 953, 977, 983, 1031, 1049, 1097, 1103, 1151, 1193
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 03 2015

Keywords

Comments

All these primes do not divide any number of the form 2^k + 3. Therefore, they are not in A256396.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1193) | p mod 24 in {17, 23}];
    
  • Mathematica
    Select[Prime@Range[196], MemberQ[{17, 23}, Mod[#, 24]] &]
  • PARI
    select(p->my(k=p%24); k==17||k==23, primes(1000)) \\ Charles R Greathouse IV, Jun 03 2015

Formula

A290402 Primes congruent to {7, 17} mod 24.

Original entry on oeis.org

7, 17, 31, 41, 79, 89, 103, 113, 127, 137, 151, 199, 223, 233, 257, 271, 281, 353, 367, 401, 439, 449, 463, 487, 521, 569, 593, 607, 617, 631, 641, 727, 751, 761, 809, 823, 857, 881, 919, 929, 953, 967, 977, 991, 1039, 1049, 1063, 1087, 1097, 1193, 1217, 1231
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 03 2017

Keywords

Comments

All these primes do not divide any number of the form 3*2^k - 1. Therefore, they are not in A001915.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1231) | p mod 24 in {7, 17}];
  • Mathematica
    Select[Prime@Range[202], MemberQ[{7, 17}, Mod[#, 24]] &]

Formula

Showing 1-7 of 7 results.